АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Множення матриць

Читайте также:
  1. Б) Множення вектора на скаляр
  2. Блок множення Product
  3. Види матриць. Лінійні дії над матрицями та їх властивості. Транспонування матриць. Добуток матриць
  4. Визначник добутку матриць
  5. До завдання № 3. (добуток матриць)
  6. Задачі на теореми складання і множення ймовірностей
  7. Знайти ранг матриць
  8. Матриці. Означення. Види матриць
  9. Множення та ділення комплексних чисел
  10. Особливості створення блочних матриць
  11. ПОЛОВЕ РОЗМНОЖЕННЯ ОРГАНІЗМІВ

 

Множення матриць розглянемо, починаючи з відомого вже прикладу 3, при підрахунку грошових затрат на виконання робіт по проходці в шахті (метро, тунелі). Нехай в рядках матриці

 

 

записані результати роботи за добу кожної із трьох змін: по виїмці породи (перший стовпець) і по кріпленню пройденої виробки (другий стовпець). Як вже згадувалось, при заданій площі поперечного перетину проходки результати робіт можуть вимірюватись в пройденних погонних метрах. Замовнику необхідно знати, яку суму грошей прийдеться виділяти на оплату праці робітників, а яку – на капітальні витрати. Існують норми розцінок на зарплату і капітальні витрати, які представимо у вигляді матриці розцінок

 

де перший стовпець – норми оплати праці робітників: за 1 погонний метр по виїмці породи і за 1 погонний метр по кріпленню відповідно. Другий стовпець: – відповідні капітальні затрати за 1 погонний метр виїмки і за 1 погонний метр кріплення.

Загальні затрати на зарплату для кожної із змін дорівнюють сумі добутків пройдених кількостей метрів по обох видах робіт на відповідні норми розцінок. Позначимо через сумму грошей зароблену -ю зміною . Аналогічно підраховуються капітальні затрати для -ої зміни по виїмці і кріпленню.

 

Отримаємо таблицю затрат


 

Зміни Затрати на зарплату по виїмці і кріпленню Капітальні затрати по виїмці і кріпленню
І-а зміна
ІІ-а зміна
ІІІ-я зміна

 

 

Ці дані запишемо у вигляді нової матриці затрат , що отримана з матриць і за допомогою операції, яку називають множенням матриць, і позначають

Для множення матриці розміру на матрицю розміру необхідна їх узгодженність, тобто, щоб число стовпців матриці (першого співмножника) збігалося з числом рядків матриці (другого співмножника). Так в наведеному прикладі матриця узгоджується з матрицею (для кожного виду робіт є норми розцінок). Однак матриця не є узгодженою з матрицею .

Означення 1. Добутком матриці розміру на матрицю розміру називається матриця розміру , елементи якої дорівнюють сумі добутків елементів -того рядка матриці на відповідні елементи -того стовпця матриці , тобто

.

Із структури елементів зрозуміло необхідність узгодженості матриць і : кожному елементу в -тому рядку матриці (першого співмножника) повинен відповідати елемент в -тому стовпці матриці (другого співмножника). Число рядків матриці дорівнює числу рядків першого співмножника, а число стовпців- числу стовпців другого співмножника.

Приклад 1. Знайти добуток матриць і , якщо , .

Розв’язання. Матриця має розмір 2х2, розмір матриці - 2х3. Число стовпців матриці дорівнює 2 і збігається з числом рядків матриці . Отже, матриці узгоджені, тому можна множити матрицю на матрицю . В результаті отримаємо матрицю розміром 2х3, тобто

.

Приклад 2. Переконатись, що для даних матриць

Звернути увагу, що в даному випадку .

Приклад 3. Переконатись, що для даних матриць

Звернути увагу, що добуток двох ненульових матриць може давати нульову матрицю, і, крім того, .

Означення 2. Матриці і називаються переставними або комутативними, якщо .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)