АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Матричним способом

Читайте также:
  1. II. Решение логических задач табличным способом
  2. Анализ себестоимости выпуска продукции металлургического комбината способом вычитания
  3. Винесення спільного множника за дужки та способом
  4. Выращивание дрожжей открытым способом
  5. Задание 4 Доказать совместность системы линейных уравнений и решить ее по методу Крамера и матричным способом.
  6. Задачи и средства обучения технике прыжка в высоту с разбега способом «перешагивание»
  7. Задачи и средства обучения технике прыжка в высоту с разбега способом «фосбери-флоп»
  8. Знаходження оберненої матриці за допомогою елементарних перетворень та за допомогою алгебраїчних доповнень. Розв’язування матричним способом системи лінійних рівнянь.
  9. Искусственная вентиляция легких способом
  10. Каким способом легче везти камень по гладкой дороге?
  11. Каким способом убирают кукурузу на зерно?
  12. Коллективным способом обучения является такая его организация, при которой обучение осуществляется путем общения в динамических парах, когда каждый учит каждого.

 

Обмежимось розглядом системи 3-х лінійних рівнянь

Запишемо такі матриці:

,

де складена з коефіцієнтів при невідомих — матриця системи, – матриця вільних членів, – матриця невідомих. Знайдемо добуток

Користуючись означенням рівності матриць, ми бачимо, що система ЛР (1) є не що інше, як рівність відповідних елементів матриць – стовпців і . Тому початкова система (1) набуває форму матричного рівняння

Для розв’язання останнього домножимо зліва рівняння (2) на обернену матрицю , вважаючи, що , отримаємо

Але , а , тоді розв’язок матричного рівняння (2) запишеться

(3)

Покажемо, що з формули (3) можна отримати формули Крамера. Дійсно, підставляючи в (3) вирази для і , маємо

За теоремою про заміщення кожний елемент останньої матриці дорівнює значенням допоміжних визначників , які були введені при розв’язуванні систем за формулами Крамера. Тому далі маємо

Звернемо увагу на те, що в формулі (3) співмножник , залежить тільки від коефіцієнтів при невідомих, а тільки від вільних членів. Тому, коли приходиться розв’язувати системи вигляду (1) з однаковими лівими частинами і різними вільними членами, то в таких випадках матричний розв’язок (3) стає зручнішим: обернену матрицю знаходимо тільки один раз і перемножуємо на нову матрицю . В той же час, за формулами Крамера прийшлося б заново обчислювати допоміжні визначники відповідно для кожного нового набору вільних членів.

Приклад 1.Розв’язати систему рівнянь матричним способом

Складемо матрицю системи

Для цієї матриці в 1.12. ми вже знайшли і обернену матрицю

Тому згідно (3) маємо

Отже,

Пропонуємо перевірити відповідь.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)