АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тень горизонтально-проецирующей прямой

Читайте также:
  1. Аналитический отчет о движении денежных средств корпорации (прямой метод)
  2. Атака – прямой левой в лицо.
  3. Билет 11. Различные уравнения прямой в пространстве. Матрица перехода к новому базису.
  4. Билет 12 Различные уравнения прямой на плоскости, геометрический смысл параметров. Формула преобразования координат вектора при переходе к новому базису
  5. В отделение проктологии поступил больной с жалобами на кровотечение из стенок прямой кишки.
  6. Векторное, канонические и параметрические уравнения прямой.
  7. Взаимное расположение прямой и плоскости в пространстве
  8. Взаимное расположение прямой и плоскости. Точка пересечения прямой и плоскости.
  9. Виды уравнений прямой: векторное, параметрическое и каноническое уравнения прямой в пространстве.
  10. Вопрос 43. Расчет времени начала снижения при заходе на посадку с прямой
  11. Врожденные заболевания прямой кишки
  12. Деление отрезков прямой на равные и пропорциональные соотношения.

Рассмотрим построение тени прямой, перпендикулярной плоскости проекций Н (тень столба). На рис. 10 изображены два отрезка [ АВ ]. Рассмотрим первый столб. Через каждую точку отрезка [ АВ ] проходит световой луч, множество этих лучей образует световую плоскость.

Поскольку эта плоскость содержит отрезок [ АВ ] – на основании признака перпендикулярности двух плоскостей она будет горизонтально-проецирующей и пересечет плоскость Н по прямой. Любая прямая определяется парой несовпадающих точек, следовательно, для построения тени отрезка [ АВ ] достаточно определить тени двух его точек.

Заметим, что точка В (b, b') принадлежит плоскости Н (столб упирается в землю этой точкой), поэтому b = bТ. Одна из искомых точек определена. Построим тень верхней точки столба – точки А (а, а'). Рассуждения для ее построения приведены выше.

Действительная тень точки А – точка аТ принадлежит плоскости Н. Соединив одноименные проекции точек (аТ и bТ ) получим тень отрезка прямой[ АВ ], которая является следом РН лучевой плоскости Р. Другой отрезок[ АВ ] расположен близко к стене (плоскости V) поэтому частично тень данного отрезка будет отброшена на нее. Следуя предыдущим рассуждениям, отметим, что b = bТ , а действительная тень точки АаТ ' окажется на стене. Поскольку точки bТ и аТ ' находятся в разных плоскостях проекций их нельзя соединить, поэтому воспользуемся мнимой тенью аТ(ф), которая определяется пересечением двух множеств – прямой, параллельной оси X, и горизонтальной проекцией луча, проходящего через точку А. Теперь одноименные проекции точек bТ и аТ(ф) можно соединить, как лежащие в одной плоскости Н.

 

 

Рис. 10. Построение тени столба

 

Построенный отрезок [ bТ аТ(ф) ] – это горизонтальный след лучевой плоскости Р. Поскольку точка аТ(ф) расположена во второй четверти пространства, мнимая часть тени отрезка показана вспомогательной тонкой линией (рис. 10). Точка пересечения отрезка [ bТ аТ(ф) ] c осью X называется точкой преломления. Она одновременно принадлежит плоскостям H и V

поэтому ее можно соединить с точкой аТ ' и получить тень того же столба на плоскости V (на стене) это будет фронтальный след лучевой плоскости P.

Из приведенных выше рассуждений можно сделать

 

вывод: тени прямой линии на плоскостях проекций представляют собой следы световой (лучевой) плоскости.

Воспользуемся построенными тенями точки А и усложним задачу. Пусть требуется на отрезке [ АВ ] определить точку К (k, k'), которая отбросит тень на ось Х. Поскольку ось X одновременно принадлежит плоскостям H и V можно отметить, что kТ = kТ '– точка преломления. Проведем через эту точку световой луч, параллельный S, в обратном направлении (рис. 10)
и определим проекции искомой точки. Такой прием, который был применен в поставленной задаче, называется способом обратных лучей.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)