Рассмотрим две плоскости
Р1: A1 x+B1 y+C1 z+D1=0
Р2:A2x+B2y+C2z+D2=0, если плоскость Р1 параллельна Р2, то выполняется условие:
(8)
9.) Условие перпендикулярности плоскостей
A1 A2 + B1B 2 + C1 С2 =0 (9)
10.а) угол между плоскостями
A1 x+B1 y+C1 z+D1=0 и A2 x+B2 y+C2 z+D2=0
(10.а)
10.б) угол между векторами
и
(10.б)
10.в) угол между прямой и плоскостью
прямая L с направляющими коэффициентами (l, m, n) и плоскость Ax+By+Cz+D=0
(10.в)
11.) Расстояние между двумя точками
Даны точки А1 (x1,y1,z1) и А2 (x2,y2,z2), расстояние между ними:
(11)
12.) Расстояние от точки M0 (x0,y0,z0) до плоскости
A x+B y+C z+D=0:
(12)
13.) Выражение векторного произведения через координаты сомножителей, если , , то
(13)
Первая строка определителя состоит из координатных ортов, вторая из проекций первого сомножителя, третья из проекций второго сомножителя.
14.) Объем параллелепипеда, построенного на векторах
, ,
(14)
знак выбирается таким образом, чтобы объем был положительный.
Рассмотрим несколько примеров применения приведенных формул. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Поиск по сайту:
|