|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Понятие вероятности случайного событияТеория вероятностей – математическая наука, изучающая закономерности случайных явлений и событий, способных многократно повторяться при воспроизведении определенного комплекса условий. Испытание – неопределяемое понятие, понимается как наблюдение того или иного явления. Событие – возможный исход того или иного испытания. Определение1: Результатнаблюдения или эксперимента, который при данном испытании может произойти, а может и не произойти, называется случайным событием. Определение2: Событие, которое обязательно наступает при каждом испытании, называется достоверным. Определение3: Событие, которое заведомо не может произойти, называется невозможным. Определение4: Два события называются равносильными, если при каждом испытании они либо оба наступают, либо оба не наступают. Определение5: События, которые не могут произойти одновременно в результате испытания, называются несовместными. Определение6: Под множеством элементарных событий задачи понимают полное множество взаимоисключающих исходов эксперимента. Пример: 1) Пусть эксперимент состоит в подбрасывании монеты. Два элементарных события: «выпадание орла» и «выпадание решки». 2) Пусть эксперимент состоит в подбрасывании кости. Шесть элементарных событий: выпадание единицы на верхней грани кости, выпадание двойки, тройки и т.д… Определение7 (классическое определение вероятности): Вероятностью события называется число, равное отношению числа исходов испытания, благоприятствующих событию (m) к числу всевозможных исходов испытания (n). Обозначается: P(A)= , P – вероятность случайного события, A – само событие. Пример: 1) Пусть эксперимент состоит в подбрасывании монеты. Два элементарных события: «выпадание орла» и «выпадание решки», значит n=2. Тогда вероятность события-«выпадание орла» равна P(A)= , где m=1. 2) Пусть эксперимент состоит в подбрасывании кости. Шесть элементарных событий: выпадание единицы на верхней грани кости, и т.д… Вероятность события «выпадание шести очков на грани кости» равна P(A)= , где m=1. Определение 8. Событие (А и B), т. е. событие, состоящее в наступлении обоих событий А и B, называется произведением событий А и B и обозначается через АB Определение 9. Событие (А или B), т. е. событие, состоящее в наступлении хотя бы одного из событий А и B, называется суммой событий А и B и обозначается через А + B Теорема сложения вероятностей (для попарно несовместимых событий): вероятность того, что произойдет хотя бы одно из попарно несовместимых событий, равна сумме вероятностей этих событий P(A+B+ C) = P(A) + P(B) + P(C). Теорема произведения вероятностей ( для попарно независимых событий ): вероятность того, что произойдут одновременно независимые события, равна произведению вероятностей P(A•B) = P(A) • P(B). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |