|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Дифференциальные уравнения первого порядка с разделяющимися переменнымиОпределение: Дифференциальным уравнением называется уравнение, связывающее между собой независимую переменную x, искомую функцию у и ее производные или дифференциалы. Символически дифференциальное уравнение записывается так: Дифференциальное уравнение называется обыкновенным, если искомая функция зависит от одного независимого переменного. Определение: Порядком дифференциального уравнения называется порядок старшей производной (или дифференциала), входящей в данное уравнение. Определение: Решением (или интегралом) дифференциального уравнения называется такая функция, которая обращает это уравнение в тождество. Определение: Общим решением (или общим интегралом) дифференциального уравнения называется такое решение, в которое входит столько независимых произвольных постоянных, каков порядок уравнения. Так, общее решение дифференциального уравнения первого порядка содержит одну произвольную постоянную. Определение: Частным решением дифференциального уравнения называется решение, полученное из общего при различных числовых значениях произвольных постоянных. Значения произвольных постоянных находятся при определенных начальных значениях аргумента и функции. График частного решения дифференциального уравнения называется интегральной кривой. Общему решению дифференциального уравнения соответствует совокупность (семейство) всех интегральных кривых. Определение: Дифференциальным уравнением первого порядка называется уравнение, в которое входят производные (или дифференциалы)не выше первого порядка. Определение: Дифференциальным уравнением с разделяющимися переменными называется уравнение вида . Для решения этого уравнения нужно сначала разделить переменные: а затем проинтегрировать обе части полученного равенства:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |