АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методика расчета параметров системного быстродействия

Читайте также:
  1. VIII. Методика экспресс-диагностики педагогической направленности учителя (Ю.А. Кореляков, 1997)
  2. АКТУАЛЬНЫЕ АСПЕКТЫ ПАТОГЕНЕЗА ВОСПАЛЕНИЯ. СОВРЕМЕННОЕ ПРЕДСТАВЛЕНИЕ О ПАТОГЕНЕЗЕ СЕПСИСА И СИНДРОМА СИСТЕМНОГО ВОСПАЛИТЕЛЬНОГО ОТВЕТА
  3. Алгоритм расчета
  4. Алгоритм расчета дисперсионных характеристик плоского трехслойного оптического волновода
  5. Алгоритм расчета температуры горения
  6. Амортизация как целевой механизм возмещения износа. Методы расчета амортизационных отчислений.
  7. Аналитический метод расчета
  8. Анатомо-физиологические особенности кожи, подкожной клетчатки, лимфатических узлов. Методика обследования. Семиотика.
  9. Анатомо-физиологические особенности органов дыхания у детей. Методика обследования. Семиотика.
  10. Анатомо-физиологические особенности органов кровообращения. Методика обследования. Семиотика.
  11. Анатомо-физиологические особенности органов пищеварения у детей. Методика обследования. Семиотика.
  12. Анатомо-физиологические особенности печени, желчного пузыря и селезенки у детей. Методика обследования. Семиотика.

Методика расчета всех видов быстродействия заключается, главным образом, в расчете системной задержки ЛЭ. При этом важным моментом на каждом уровне компоновки устройства являются расчеты задержки сигнала в межкаскадных логических цепях и числа каскадов ЛЭ в цепи обработки информации.

Расчет задержки в логических цепях связан с представлением логических цепей в виде абстрактных моделей, в которых физическая длина цепи (Lцi) определяется как произведение средней длины связи (lсвi) на среднее число связей в цепи (nсвi), т.е.:

.

Методы расчета средней длины связи и длины цепи с учетом оптимизации процессов трассировки соединений и размещения элементов приведены в пп.6.2 и 6.3. Правило определения среднего числа связей в цепи, основанное на использовании результатов расчета параметров модели логической схемы, приведены в главе 5.

Для определения числа каскадов элементов (h) и числа каскадов ЛЭ (H) на соответствующих уровнях компоновки используются соотношения системной взаимосвязи, приведенные в главе 3.

Вместе с тем, расчет времени задержки в логических цепях, расположенных на разных уровнях компоновки устройства, имеет свои особенности, связанные с необходимостью учета типа линий связи: с активными потерями (напр., RC ‑цепи в кристаллах БИС, СБИС и кремниевых подложках МКМ) или без потерь (напр., LC‑ цепи в конструкциях большинства МПП). Поэтому эти особенности могут быть учтены использованием при расчете следующих формул:

для логических цепей с потерями (i = 1…3):

, (7.20)

где:

Rвых – выходное сопротивление ЛЭ;

R 0 – погонное сопротивление проводников логической цепи;

С 0 – погонная емкость проводников логической цепи.

 

для логических цепей без потерь (i = 2…4 и более):

, (7.21)

где: t 0 – погонная задержка сигнала в линиях связи, определяемая скоростью света и диэлектрической проницаемостью среды;

Кz – коэффициент замедления распространения сигнала в логических цепях, значение которого рекомендуется принимать:

Кz = 1,2 – для плоскостной конструкции устройства;

Кz = 1,5 – для объемной конструкции устройства.

Рассмотренные методы расчета предназначены, главным образом, для практического применения при электронном конструировании узлов, блоков и устройств, а также БИС и СБИС. Вместе с тем, они особенно полезны для использования при исследовании и прогнозировании широкого спектра параметров перспективных конструкций элементов и устройств ЭВМ в зависимости от заданного быстродействия и наоборот.

 

 

Глава 8. ПРИМЕРЫ ПРАКТИЧЕСКИХ РАСЧЕТОВ КОМПОНОВОЧНЫХ ПАРАМЕТРОВ ЛОГИЧЕСКИХ СХЕМ
И КОНСТРУКЦИЙ ЭВМ


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)