АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Закон возрастания энтропии

Читайте также:
  1. B) Наличное бытие закона
  2. II закон Кирхгофа
  3. II. Законодательные акты Украины
  4. II. Законодательство об охране труда
  5. II.3. Закон как категория публичного права
  6. III. Государственный надзор и контроль за соблюдением законодательства об охране труда
  7. IX. У припущенні про розподіл ознаки по закону Пуассона обчислити теоретичні частоти, перевірити погодженість теоретичних і фактичних частот на основі критерію Ястремського.
  8. IX.3.Закономерности развития науки.
  9. А 55. ЗАКОНОМІРНОСТІ ДІЇ КОЛОГИЧЕСКИХ ФАКТОРІВ НА ЖИВІ ОРГАНІЗМИ
  10. А) Закон диалектического синтеза
  11. А) совокупность предусмотренных законодательством видов и ставок налога, принципов, форм и методов их установления.
  12. А. Законодательные (представительные) органы власти республик в составе Российской Федерации

1) Энтропия и ее термодинамический смысл:

Энтропия – это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

В любом обратимом процессе изменения энтропии равно 0

(1)

В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает Δ S > 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

ΔS ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле Δ S определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

 

т.е. изменения энтропии S Δ S 1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δ Q = 0, то Δ S = 0 => S = const, то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const; T 1 = T 2: )

При изохорном процессе (V = const; V 1 = V 2; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S1 + S2 + S3 +... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостоян (w ≥ 1, а математическая вероятность ≤ 1).

За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданн состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

S=

где - постоянная Больцмана (). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы – число микросостояний максимально, при этом максимальна и энтропия.

Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой сис-ме ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистич толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросос, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максим.

Закон возрас энтропии и составляет основ содержа второго начала термодинамики, которое в наиболее общем виде формулируется так:

В замкнутой системе все необрат процессы протекают в направлении возраст энтропии; в частном случае, когда процессы, протекающие в замкнутой системе, обратимы, энтропия системы остается постоянной.

Более кратко второе начало термодинамики может быть сформулировано следующим образом:

В замкнутой системе энтропия никогда не убывает, она либо возрастает, либо остается неизменной, т. е. в замкнутой системе всегда

(9)

Где знак равенства относиться к обратимым процессам, а знак неравенства ― к необратимым


 

Термич и калорическое урав состояния. Связь этих уравнений.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)