|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Экспериментальные (эмпирические) температурные шкалыПроцесс измерения многих физических величин состоит в экспериментальном определении соотношения между значением измеряемой величины и величины, условно принятой за единицу. Температура, являющаяся характеристикой внутреннего состояния тела и относящаяся к категории «интенсивных» физических величин (т.е. не зависящих от массы тела), не обладает свойством аддитивности. Это приводит к тому, что для измерения этой величины нужна не только единица измерения, но и шкала, по которой как бы «отсчитывается» значение температуры. За единицу температуры в системе единиц СИ принят кельвин (К). Он определяется как часть температуры тройной точки воды: температуры равновесия трёх фаз – твёрдой, жидкой и газообразной – чистой воды естественного изотопического состава. Она принята на 0,01 К выше температуры таяния льда. Воспроизводимость тщательно подготовленной тройной точки воды составляет 0,0002 К. Температурная шкала – непрерывная совокупность чисел, линейно связанных с числовыми значениями какого – либо удобно и достаточно точно измеряемого физического свойства, представляющего собой однозначную и монотонную функцию температуры. Это свойство принято называть термометрическим свойством. Например, в ранней стадии развития термометрии за термометрическое свойство бралось свойство тел, изменять свой объём при изменении температуры тела. Такие шкалы, постр с использованием выбранного св-ва конкретного рабочего тела, принято называть эмпирическими Строятся эмпирические температурные шкалы достаточно просто. Пусть у нас имеется произвольный термометр. Обозначим буквой a его термометрическую величину (например, объём жидкости, ЭДС, электрическое сопротивление и т.д.). При нагревании величина a должна изменяться монотонно. Иначе между температурой и термометрической величиной не будет взаимно однозначного соответствия. Так, например, объём воды нельзя принять за термометрическое свойство, т.к. эта функция проходит через минимум при 4˚С. По смыслу между термометрической величиной и температурой должна быть функциональная связь: Т = f(a). На функцию f нет никакого ограничения. Но желательно, чтобы функция была как можно проще. Самой простой функцией является линейная функция, т.е. наиболее выгодно положить, что Т = Аа. Постоянную А, можно выбирать произвольно. Выбором этой величины однозначно определится и единица температуры – градус. Но чаще поступают иначе: постоянную А вычисляют, приписывая какой – либо точке определённую температуру или двум точкам определенную разность температур. Такие температурные точки называются реперными. До 1954 г. темпер шкала строилась по 2 реперным точкам: нормальной точке кипения воды Тк и нормальной точке плавления льда Тпл., разность температур между этими двумя точками равна 100˚. После этого постоянная А вычисляется очень просто: , где ак и апл – значения термометрич величины в этих точках. Но эксперимент показал, что тройная точка воды обладает лучшей воспроизводимостью. И поэтому все современные температурные шкалы строятся по этой реперной точке. В абсолютной термодинамической шкале Кельвина принимается, что температура этой точки равна 273,16 К. Тогда постоянная А вычисляется так: , где атр – значение термометрической величины в тройной точке. Такой выбор численного значения температуры тройной точки воды сделан для того, чтобы интервал между нормальными точками кипения воды и плавления льда составлял точно 100 К. Тем самым устанавливается преемственность шкалы Кельвина с применявшейся ранее шкалой с двумя температурными точками. В абсол термодинамической шкале Кельвина температуры кипения воды и плавления льда таковы: 273,15 К и 373,15 К соответственно. Значение температуры, измеренной по шкале, описанной выше зависит от термометрического свойства вещества. Следовательно, в зависимости от выбора термометрической величины а можно построить бесконечно много температурных шкал. А т.к. термометрические свойства у тел разные, то эти шкалы, совпадая в основных реперных точках, будут давать разные показания в других точках. Для устр этой проблемы можно взять какой – либо термометр за основной, а ост термометры градуировать по нему. Таким терм оказался газовый терм и, связанная с ним идеально – газовая шкала температур. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |