АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Соотношения Максвелла

Читайте также:
  1. В) соотношения целей и средств.
  2. Виды статистических величин, их применение в медицине. Интенсивные коэффициенты и коэффициенты соотношения, методика расчета, область применения.
  3. Вязко-упругое тело Максвелла
  4. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям их теплового движения. Средние скорости теплового движения частиц.
  5. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплого движения.
  6. Закон Максвелла распределения молекул по абсолютным значениям скоростей. Средняя, средняя квадратичная и наиболее вероятная скорость молекул.
  7. Интеграл Мора-Максвелла
  8. Информация и пространственно-временные соотношения
  9. Исходные соотношения. Правило Рента
  10. КОЛИЧЕСТВЕННЫЕ СООТНОШЕНИЯ В ПИКТОГРАММЕ.
  11. Компоновочная модель логической схемы устройства. Описание модели, параметры и частные соотношения
  12. Корпускулярно-волновой дуализм. Длина волны де Бройля. Квантование электронных орбит атома в модели де Бройля. Соотношения неопределенностей.

Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины — температуру, давление, объѐм и их производные.

Рассмотрим выражение для полн дифференциала внутрен энергии:

Известно, что если смешанные производные существуют и непрерывны, то они не зависят от порядка дифференцирования, то есть

Рассматривая выражения для других дифференциалов, получаем:

Эти соотношения называются соотношениями Максвелла.

Связь между термодинамическими потенциалами. Уравнение Гиббса-Гельмгольца Связь между внутренней энергией U и свободной энергией FТ.к. а то


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)