АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вычитание классов

Читайте также:
  1. Бесклассовый общественный строй с единой общенародной собственностью на средства производства, полным социальным равенством всех членов.
  2. Бесклассовый общественный строй с единой общенародной собственностью на средства производства, полным социальным равенством всех членов.
  3. БЛЕСК И НИЩЕТА КЛАССОВОГО ПОДХОДА
  4. Взаимоотношение классов и задачи с.-д. на новом этапе революции
  5. Вычитание
  6. Вычитание и сложение операндов большой размерности
  7. Государственно-правовое регулирование классово-политической борьбы
  8. Для средних классов
  9. Изменения в сословно-классовой структуре общества.
  10. Изображение атрибутов и операций на диаграммах классов
  11. Интегрирование некоторых классов функций, содержащих иррациональности.

Рассмотрим два множества (класса) А и В, из которых В может и не быть частью А. Разностью множеств (классов) А и В на­зывается множество тех элементов класса А, которые не являют­ся элементами класса В. Разность обозначается А —В.

Могут встретиться следующие пять случаев (если классы А и В не пусты и не универсальны).

1-й случай (рис. 23). Класс А включает в себя класс В. Тогда разностью А — В будет заштрихованная часть А, т. е. множество тех элементов, которые не суть В. Например, если мы из множе­ства звуков русского языка (А) вычтем множество гласных звуков (В), то получим множество согласных звуков, изображенное на чертеже в виде заштрихованного кольца.

2-й случай (рис. 24). Разностью двух перекрещивающихся классов будет заштрихованная часть А. Например, разность мно­жеств «рабочий» (А) и «рационализатор» (В) даст множество рабочих, которые не являются рационализаторами.

3-й случай (рис. 25). Если класс А полностью включен в класс В и класс В полностью включен в класс А, то эти классы (множества) равны (тождественны). Тогда разность А -В даст пустой, или нулевой, класс, т. е. класс, в котором нет ни одного элемента. Например, если мы из класса «сосна» вычтем класс «сосна», то разность А—В будет равна пустому классу.

4-й случай (рис. 26). Класс А и класс В не имеют общих элементов.

 

Тогда разность А—В=А, так как всякий элемент класса А не является элементом класса В. Например, разность класса «стол» (А) и класса «стул» (В) равна классу «стол» (А).

В результате «вычитания» классов, соответствующих поняти­ям, находящимся в отношении противоположности [«низкий дом» (А), «высокий дом» )] или противоречия [«одушевленный предмет» (А), «неодушевленный предмет» )], разность А— В также равна А (рис. 27, 28).

5-й случай (рис. 29). Если объем класса А меньше объема класса В, то в результате вычитания получим пустой класс, так как нет элементов класса А, которые не являлись бы элементами класса В. Например, разность класса «личное местоимение» (А) и «местоимение» (В) дает пустой класс.

Для операции вычитания классов справедливы следующие законы:

 

В интерпретации логических алгебр посредством классов за­пись обозначает включение класса А в класс В; обозна­чает эквивалентность классов (А тогда и только тогда, когда В).

 

Дополнение к классу А

Дополнением к классу А называется класс А" который, будучи сложенным с А, дает рассматриваемую область предметов (эту область обозначим 1), а в пересечении с классом А дает т. е. для которого Откуда А' = 1- А, поэтому

операцию дополнения к классу А можно рассматривать как частный случай операции «вычитания» (из универсального клас­са). Если от класса целых чисел (1) отнять класс четных чисел (А), то мы получим класс нечетных чисел (т. е. А" поскольку всякое целое число четное или нечетное и нет таких четных чисел, которые были бы нечетными). Графически это можно изобразить так, что заштрихованная часть будет обозначать дополнение к А, т. е. A' (рис. 30).

Для операции дополнения кроме указанных выше установ­лены и следующие законы:

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)