АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Конструктивные исчисления высказываний В. И. Гливенко и А. Н. Колмогорова

Читайте также:
  1. I. Определите, какое из этих высказываний несет психологическую информацию.
  2. А.Конструктивные роли
  3. Алгебра высказываний
  4. Глава 4. КОНСТРУКТИВНЫЕ МЕТОДЫ УПРАВЛЕНИЯ СТАРЕНИЕМ МАШИН
  5. Законы логики высказываний
  6. Исследовать функции методом дифференциального исчисления и схематично построить их графики.
  7. Историческая и художественная ценность, конструктивные особенности Новогрудского и Гродненского замков.
  8. Какие из приведенных высказываний относятся к положительным сторонам рекламы, какие – к отрицательным?
  9. КОНСТРУКТИВНЫЕ ЛОГИКИ
  10. Конструктивные особенности бурового инструмента, применяемом при шнековом бурении для отбора проб.
  11. Конструктивные особенности изгибаемых элементов

Первыми представителями конструктивной логики были на­ши отечественные математики — А. Н. Колмогоров (1903— 1987) и В. И. Гливенко (1897—1940). Первое исчисление, не соде­ржащее закона исключенного третьего, было предложено в 1925 г. А. Н. Колмогоровым в связи с его критикой концепции Л. Брауэра, а в дальнейшем развито В. И. Гливенко. Позже было опубликовано исчисление Гейтинга, которое Колмогоров интерпретировал как исчисление задач, что легло в основу содер­жательного истолкования исчислений, не пользующихся законом исключенного третьего, а это, в свою очередь, стало основой всех дальнейших, подлинно научных исследований таких исчислений.

С помощью введения понятий «псевдоистинность» (двойное отрицание суждения) и «псевдоматематика» («математика псев­доистинности») Колмогоров доказал, что всякий вывод, получен­ный с помощью закона исключенного третьего, верен, если вме­сто каждого суждения, входящего в его формулировку, поставить суждение, утверждающее его двойное отрицание. Тем самым он показал, что в «математике псевдоистинности» возможно приме­нение принципа исключенного третьего.

Колмогоров различает две логики суждений —общую и част­ную. Различие между ними в одной аксиоме А -> А, которая имеется лишь среди аксиом частной логики. Интересна взаимо­связь соотношения содержания и областей применения этих логик: содержание частной логики суждений богаче, чем обшей, так как частная логика дополнительно включает аксиому но область применения ее уже. Из системы частной логики можно вывести все формулы традиционной логики суждений.

Какова же область применения частной логики суждений? Все ее формулы верны для суждений типа А', в том числе для всех финитных и для всех отрицательных суждений, т. е. область применимости ее совпадает с областью применимости формулы двойного отрицания (Символами А', В'... обозначены произвольные суждения, для которых из двойного отрицания следует само суждение.)

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)