|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Неявные определенияВотличие от явных определений, имеющих структуру в неявных определениях просто на место Dfn подставляется контекст, или набор аксиом, или описание способа построения определяемого объекта. Контекстуальное определение позволяет выяснить содержание незнакомого слова, выражающего понятие, через контекст, не прибегая к словарю для перевода, если текст дан на иностранном языке, или к толковому словарю, если текст дан на родном языке. Значения неизвестных в уравнениях даны в неявном виде. Если дано уравнение, первой степени, например 10— y =3, или дано квадратное уравнение, например х 2 — 7 x +12=0, то, решая их и находя значение корней этих уравнений, мы даем явное определение для у (у =7) и для х (x1 = 4 и х2 = 3). Индуктивные определения характеризуются тем, что определяемый термин используется в выражении понятия, которое ему приписывается в качестве его смысла. Примером индуктивного определения является определение понятия «натуральное число» с использованием самого термина «натуральное число»: 1.1 — натуральное число. 2. Если n — натуральное число, то n + 1 — натуральное число. 3. Никаких натуральных чисел, кроме указанных в пунктах 1 и 2, нет. С помощью этого индуктивного определения получается натуральный ряд чисел: 1, 2, 3, 4.....Таков алгоритм построения натуральных чисел.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |