АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Формализация эсихейрем с общими посылками

Читайте также:
  1. YIII.4.3.Формализация. Язык науки
  2. Всеобщими формами существования (бытия) матери выступают пространство и время.
  3. Культура vs. формализация
  4. Общими распоряжениями полиции. Конституции закрепляют пра-
  5. Построение концептуальной модели системы и её формализация
  6. Сорит (с общими посылками)
  7. Усилительные каскады с общими коллектором и базой
  8. ФОРМАЛИЗАЦИЯ И ПРОГРАММНАЯ РЕАЛИЗАЦИЯ БАЗЫ ЗНАНИЙ
  9. Формализация процесса восприятия человеком Вселенной
  10. Формализация процесса управления

Эпихейремой в традиционной логике называется такой слож­носокращенный силлогизм, обе посылки которого представляют собой сокращенные простые категорические силлогизмы (энтимемы).

Схема эпихейремы, содержащей лишь общие и утвердитель­ные высказывания, обычно записывается следующим образом:

 

Все А суть С, так как А суть В.

Все D суть А. так как D суть Е.

______________________

Все D суть С.

 

Пример эпихейремы:

Благородный труд (А) заслуживает уважения (С), так как благородный труд (А) способствует прогрессу общества (В).

Труд учителя (D) есть благородный труд (А), так как труд учителя (D) заключается в обучении и воспитании подрастающего поколения (E).

_________________________________________

Труд учителя (D) заслуживает уважения (С).

 

Первая и вторая посылки эпихейремы представляют собой энтимемы, т, е. сокращенные категорические силлогизмы, у ко­торых одна из посылок опущена. Выразим полностью первую и вторую посылки эпихейремы.

1. Все В суть С. 2. Все Е суть А.

Все А суть В. Все D суть Е.

Все А суть С. Все D суть А.

 

Возьмем заключения первого и второго силлогизмов и сде­лаем их большей и меньшей посылками нового, третьего сил­логизма.

3. Все А суть С.

Все D суть А

._____________

Все D суть С.

 

Восстановим полностью эпихейрему.

 

1. Все, что способствует прогрессу общества (В), заслуживает уважения (С). Благородный труд (А) способствует прогрессу общества (В).

_____________________________________________________________________________________

Благородный труд (А) заслуживает уважения (С).

 

2. Обучение и воспитание подрастающего поколения (E) есть благородный труд (А).

Труд учителя (D) заключается в обучении и воспитании подрастающего по­коления (E).

__________________________________________________________________________________

Труд учителя (D) есть благородный труд (А).

 

Заключения первого и второго силлогизмов делаются посыл­ками третьего силлогизма.

 

3. Благородный труд (А) заслуживает уважения (С). Труд учителя (D) есть благородный труд (А).

_________________________________________________________________________________________________



Труд учителя (D) заслуживает уважения (С).

 

Приведем еще один пример эпихейремы.

 

Все рыбы (А) — позвоночные животные (С), так как рыбы (А) имеют скелет(В).

Все акулы (D) — рыбы (А), так как акулы (D) дышат жабрами (Е).

__________________________________________________________________________________________________________

Все акулы (D) — позвоночные животные (С).

 

В виде правила вывода восстановленную эпихейрему можно записать так:

Это правило путем преобразований можно перевести в фор­мулу:

В целях большей наглядности переставим посылки и запишем эту формулу так:

Можно доказать, что эта формула является законом логики. Так же как и энтимемы, сложносокращенные силлогизмы значительно упрощают наши рассуждения.

Выводы, основанные на логических связях между суждениями (выводы логики высказываний)

Если в логике предикатов простые суждения расчленялись на субъект и предикат, то в логике высказываний суждения не расчленяются, а рассматриваются как простые суждения, из ко­торых с помощью логических связок (логических постоянных) образуются сложные суждения.

Правила прямых выводов логики высказываний позволяют из данных истинных посылок выводить истинное заключение. На основе правил прямых выводов построены чисто условные и условно-категорические, разделительные и разделительно-категорические, а также условно-разделительные (лемматические) умозаключения.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)