|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Параллельное соединение резистивного и индуктивного элементовДля цепи на рис. 21 можно записать ; , где [См] – активная проводимость; , где [См] – реактивная проводимость катушки индуктивности. Векторной диаграмме токов (рис. 22) для данной цепи соответствует уравнение в комплексной форме , где ; - комплексная проводимость; . Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 23.
. Литература 1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с. 2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с. Контрольные вопросы и задачи 1. В чем сущность реактивных сопротивлений? 2. Какой из элементов: резистор, катушку индуктивности или конденсатор – можно использовать в качестве шунта для наблюдения за формой тока? 3. Почему катушки индуктивности и конденсаторы не используются в цепях постоянного тока? 4. В ветви на рис. 12 . Определить комплексное сопротивление ветви, если частота тока . 5. В ветви на рис. 15 . Определить комплексное сопротивление ветви, если частота тока . 6. В цепи на рис. 18 . Определить комплексные проводимость и сопротивление цепи для . 7. Протекающий через катушку индуктивности ток изменяется по закону А. Определить комплекс действующего значения напряжения на катушке. | ||||||
Лекция N 5. Закон Ома для участка цепи с источником ЭДС. |
Объединяя оба случая, получим
или для постоянного тока
Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.
Основы символического метода расчета цепей
Расчет цепей переменного синусоидального тока может производиться не только путем построения векторных диаграмм, но и аналитически – путем операций с комплексами, символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством векторных диаграмм является их наглядность, недостатком – малая точность графических построений. Применение символического метода позволяет производить расчеты цепей с большой степенью точности. Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и законе Ома в комплексной форме. Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин. 1. Первый закон Кирхгофа в комплексной форме:
2. Второй закон Кирхгофа в комплексной форме:
или применительно к схемам замещения с источниками ЭДС
3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет вид: § первый закон Кирхгофа:
§ второй закон Кирхгофа
Пример. Дано:
Решение:
1. . 2. . 3. . 4. Принимая начальную фазу напряжения за нуль, запишем: . Тогда . 5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это вытекает из закона Ома), то
6. . 7. Аналогичный результат можно получить, составив для данной схемы уравнения по законам Кирхгофа в комплексной форме или после подстановки численных значений параметров схемы
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.) |