АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнения линии конечной длины

Читайте также:
  1. Cоздание массивов постоянной длины
  2. I. Расчет производительности технологической линии
  3. V. Множественные волнообразные линии
  4. VI Дифференциальные уравнения
  5. Алгебраические уравнения
  6. Аппаратура линии связи: аппаратура передачи данных, оконечное оборудование, промежуточная аппаратура.
  7. Арендуемые линии
  8. Виды буксировок в море, буксирные линии, требования к ним.
  9. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  10. Вопрос 24 поверхности второго порядка (эллипсоид, цилиндры, конус) и их канонически уравнения. Исследование формы поверхности методом параллельных сечений.
  11. Вопрос. Цифровые фильтры с конечной импульсной характеристикой (КИХ).
  12. Вопрос№6 Магнитное поле. Линии магнитной индукции

Постоянные и в полученных в предыдущей лекции формулах

; (5)

 

(6)

определяются на основании граничных условий.

Пусть для линии длиной l (см. рис. 1) заданы напряжение и ток в начале линии, т.е. при .

Тогда из (5) и (6) получаем

откуда

Подставив найденные выражения и в (5) и (6), получим

(7)

 

(8)

Уравнения (7) и (8) позволяют определить ток и напряжение в любой точке линии по их известным значениям в начале линии. Обычно в практических задачах бывают заданы напряжение и ток в конце линии. Для выражения напряжения и тока в линии через эти величины перепишем уравнения (5) и (6) в виде

; (9)

 

. (10)

Обозначив и , из уравнений (9) и (10) при получим

откуда

После подстановки найденных выражений и в (9) и (10) получаем уравнения, позволяющие определить ток и напряжение по их значениям в конце линии

; (11)

 

. (12)

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)