АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задача К1

Читайте также:
  1. VI. Общая задача чистого разума
  2. Вопрос 2 Проверка и оценка в задачах со случайными процессами на примере решения задач экозащиты, безопасности и риска.
  3. Глава 10 Системный подход к задачам управления. Управленческие решения
  4. ГЛАВА 2.1. ЗАЩИТА ИННОВАЦИЙ КАК ЗАДАЧА УПРАВЛЕНИЯ ИННОВАЦИОННЫМИ ПРОЦЕССАМИ
  5. Глава 4. Математические основы оптимального управления в экономических задачах массового обслуживания
  6. Двойственная задача линейного программирования.
  7. Доклад о задачах власти Советов
  8. Доклад об экономическом положении рабочих Петрограда и задачах рабочего класса на заседании рабочей секции Петроградского совета рабочих и солдатских депутатов
  9. Задача 1
  10. Задача 1
  11. Задача 1
  12. ЗАДАЧА 1

(тема: “Кинематика точки”)

Задача К1. Точка В движется в плоскости ху (рис. К1.0-К1.9, табл. К1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями: х= f1 (t), у = f2 (t), где х и у выражены в сантиметрах, t – в секундах (координатный способ задания движения точки). Зависимость х = f1 (t) указана непосредственно на рисунках, а зависимость у = f2 (t) дана в табл. К1.

Найти уравнение траектории точки, а для момента времени t1 = 1с определить координаты, скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории. Выполнить чертеж, на котором построить траекторию точки, отметить положение точки при t1 = 1с и в этом положении построить все найденные векторы.

 

Таблица К1

Номер условия
Рис. 0-2 Рис. 3-6 Рис. 7-9
 
 
 
 
 
 
 
 
 
 

Указания. Задача К1 относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовых координатах (координатный способ задания движения точки), а также формул, по которым определяются скорость, касательное и нормальное ускорения точки при естественном способе задания ее движения.

В данной задаче все искомые величины нужно определить только для момента времени t1 = 1 с. В некоторых вариантах задачи К1а при определении траектории или при последующих расчетах (для их упрощения) следует учесть известные из тригонометрии формулы: cos 2a= 1 – 2sin2a = 2 cos2a- 1; sin 2a = 2sin a×cos a.

В задаче К1а чертеж следует выполнить на клетчатой или миллиметровой бумаге, указав масштабы длины, скорости и ускорения.

 

Рис. К1.0 Рис. К1.1 Рис. К1.2
Рис. К1.3 Рис. К1.4 Рис. К1.5
Рис. К1.6 Рис. К1.7 Рис. К1.8

 

 

Перед выполнением задания прочтите по учебнику тему: «Кинематика точки».

 

 

Вопросы, на которые следует обратить внимание и выучить:

 

 

1. Что означает задать движение точки?

2. Три основных способа задания движения точки (векторный, координатный, естественный).

3. Объясните, как в каждом из способов задать движение точки (уравнения движения);

4. Как определяются траектория точки, ее скорость и ускорение (величина и направление) в каждом способе?

5. Поясните, как строятся естественные оси (в какой точке находится начало координат, каково направление каждой оси);

6. Каков физический смысл векторов ;

7. Поясните, как определить характер движения точки по траектории (ускоренное или замедленное).

 

Пример К1. Уравнения движения точки в плоскости заданы координатным способом и имеют вид:

, (1)

, (2)

где время t задано в секундах, координаты x, y – в метрах.

Найти: уравнение траектории точки; положение точки на траектории при (начальное положение) и при c; скорость точки; ускорение точки; касательное , нормальное ускорения точки и радиус кривизны траектории при c. В каждом пункте выполнить соответствующие построения на рисунке.

Решение. 1. Найдем уравнение траектории, исключив из (1) и (2) параметр t – время. Способ исключения t зависит от вида функций в правых частях (1), (2). В данном случае найдем из (1), (2) соответственно

.

Возводя полученные соотношения в квадрат, после этого складывая их и учитывая, что , найдем:

Из этого уравнения следует, что траекторией точки является эллипс, полуоси которого равны 4 м и 6 м, а центр имеет координаты (0, 0).

Выберем масштаб координат и выполним рисунок. Следует заметить, что приведенный рисунок (Рис. К1а) имеет вид, соответствующий уже окончанию решения; свой рисунок рекомендуется делать по мере продвижения решения. Это позволяет контролировать получаемые результаты и делает их более наглядными.

2. Находим положение точки при , подставляя это значение t в (1) и (2):

3. Находим положение точки при , подставляя это значение t в (1) и (2):

Указываем на рисунке точки и , учитывая масштаб координат.

4. Найдем скорость точки. Из теории следует, что при координатном способе задания движения определяются сначала проекции скорости на оси координат. Используя (1) и (2) – уравнения движения точки – находим

, (3)

. (4)

Модуль скорости . Подставляя сюда (3), (4), получим

. (5)

При с: , ,

. (6)

Выберем масштаб для скоростей (рис. К1а), проведем в точке M 1 линии параллельные осям x и y, и на этих линиях в масштабе скоростей отложим отрезки: 5,44 по оси x и - 4,71 по оси y, что соответствует величинам и знакам найденных проекций вектора скорости. На этих составляющих строим параллелограмм (прямоугольник), диагональ которого по величине и направлению соответствует вектору . Проверьте следующее: длина построенного вектора должна получиться равной найденному значению (с учетом масштаба скоростей). Вектор направлен по касательной к траектории в точке и показывает направление движения точки по траектории.

Масштаб длины: _____ =1м, скорости ___ =1м/с, ускорения: __ =1м/с2 Рис. К1а. В точке именно сейчас построим естественные оси: касательную и главную нормаль (эти оси потребуются позже). Каса-тельную проводим вдоль ; главную нормаль проводим перпендикулярно в плоскости рисунка и направляем к центру кривизны траектории в точке (в сторону вогнутости траектории).  

 

5. Находим ускорение точки, используя (3), (4):

, (7)

. (8)

Модуль ускорения . Из (7), (8) получим

. (9)

Подставляя в (7) - (9) , найдем

, ,

. (10)

В точке строим в масштабе проекции ускорений , учитывая их величины и знаки, а затем строим вектор ускорения . Построив , следует проверить, получилось ли на рисунке (c учетом масштаба ускорений), и направлен ли вектор в сторону вогнутости траектории (вектор проходит через центр эллипса, но это есть особенность данной задачи, связанная с конкретным видом функций (1) и (2)).

6. Находим касательное ускорение , характеризующее изменение модуля .

Учитывая (5), получим .

При

. (11)

Касательное ускорение можно также найти, дифференцируя по времени равенство Получим

, откуда следует

Нормальную составляющую ускорения, характеризующую изменение направления , можно найти по формуле

, (12)

если - радиус кривизны траектории заранее известен, или (учитывая, что, и, следовательно, ) по формуле

. (13)

Так как в данной задаче радиус заранее неизвестен, то используем (13). Подставляя (10), (11) в (13), получим

. (14)

Вернемся к рис. К1а. Ранее на этом рисунке вектор был построен по составляющим , . С другой стороны, этот вектор можно разложить на составляющие по естественным осям и (пользуясь правилом параллелограмма). Выполним это разложение и построим на рисунке векторы и . Далее следует провести проверку: с учетом масштаба ускорений определить по рисунку величины , и убедиться, что они совпадают с (11), (14).

Заметим, что движение точки ускоренное, т.к. направления векторов и совпадают (рис. К1а).

Найдем радиус кривизны , используя (12), откуда следует, что . Подставляя в последнее соотношение и из (6) и (14), получим радиус кривизны траектории в точке : . Отложим на рисунке от точки по оси отрезок длины (в масштабе длин); полученная точка есть центр кривизны траектории в точке .

 

Объединяя полученные результаты, запишем

Ответ:

1. траектория точки - эллипс, имеющий уравнение ;

2.

3.

4. ;

5. ;

6. ; ;

.

 

 

Обсудим некоторые особенности и частные случаи, которые могут встретиться в задачах.

 

Если траектория точки – прямая линия, то и, следовательно, . Найденное по величине и направлению ускорение равно ускорению .

Если траектория точки – окружность, то , где R – радиус окружности (определяется из уравнения траектории). Если скорость V точки найдена, то . Вектор направлен к центру окружности. Касательное ускорение , полное ускорение .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.)