|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задача Д3(тема: “Теорема об изменении кинетической энергии системы”)
Механическая система состоит из грузов 1 и 2 (коэффициент трения грузов о плоскость f = 0,1), цилиндрического сплошного однородного катка 3 и ступенчатых шкивов 4 и 5 с радиусами ступеней R 4 = 0,3 м, r 4 = 0,1 м, R 5 = 0,2 м, r 5 = 0,1 м (массу каждого шкива считать равномерно распределенной по его внешнему ободу) (рис. Д3.0 – Д3.9, табл. Д3). Тела системы соединены друг с другом нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям. Под действием силы F = f (s), зависящей от перемещения точки приложения силы, система приходит в движение из состояния покоя. При движении системы на шкивы 4 и 5 действуют постоянные моменты сил сопротивлений, равные соответственно M 4 и М 5. Определить значение искомой величины в тот момент времени, когда перемещение точки приложения силы равно s,. Искомая величина указана в столбце "Найти" таблицы, где обозначено: - скорость груза 1, - скорость центра масс катка 3, - угловая скорость тела 4 и т.д.
Таблица Д3
Указания. Задача ДЗ - на применение теоремы об изменении кинетической энергии системы. При решении задачи учесть, что кинетическая энергия системы равна сумме кинетических энергий всех входящих в систему тел: эту энергию нужно выразить через ту скорость (линейную или угловую), которую в задаче надо определить. При вычислении кинетической энергии катка, совершающего плоское движение, для установления зависимости между его угловой скоростью и скоростью его центра масс воспользоваться понятием о мгновенном центре скоростей (кинематика). При определении работы все перемещения следует выразить через заданное перемещение s 1, учтя, что зависимость между перемещениями здесь будет такой же, как между соответствующими скоростями. Когда по данным таблицы m 2 = 0, груз 2 на чертеже не изображать; шкивы 4 и 5 всегда входят в систему. Пример ДЗ. Механическая система (рис. ДЗ) состоит из сплошного цилиндрического катка l, ступенчатого шкива 2 с радиусами ступеней R 2 и r 2 (масса шкива равномерно распределена по его внешнему ободу) и груза 3 (коэффициент трения груза о плоскость равен f). Тела системы соединены друг с другом нитями, намотанными на шкив 2.
Решение. 1. Рассмотрим движение неизменяемой механической системы, состоящей из тел 1 2, 3, соединенных нитями. Изобразим все действующие на систему внешние силы: активные , момент сопротивления М 2 реакции и силы трения и . Для определения воспользуемся теоремой об изменении кинетической энергии системы (1) 2. Определяем Т 0 и Т. Так как в начальный момент система находилась в покое, то Т 0 = 0. Величина Т равна сумме энергий всех тел системы: (2) Учитывая, что тело 1 совершает плоское движение, тело 3 движется поступательно, а тело 2 вращается вокруг неподвижной оси, получим (3) Все входящие сюда скорости следует выразить через искомую . Приняв во внимание, что точка K 1 - мгновенный центр скоростей катка 1, и обозначив радиус катка через r 1, получим (4) Кроме того, входящие в (3) моменты инерции имеют значения (5) Подставив все величины (4) и (5) в равенство (3), а затем используя равенство (2) получим окончательно: (6) 3. Теперь найдем сумму работ всех действующих внешних сил при том перемещении, которое будет иметь система, когда точка С 1 пройдет путь s 1. Одновременно все перемещения следует выразить через заданную величину s 1, для чего учтем, что здесь зависимость между перемещениями будет такой же, как и между соответствующими скоростями в равенствах (4), т.е. . В результате получим: Работа остальных сил равна нулю, так как точка K 1, где приложены силы и , является мгновенным центром скоростей, точка O, где приложены , и , неподвижна, а реакция перпендикулярна перемещению груза 3. Тогда окончательно (7) 4. Подставив выражения (6) и (7) в уравнение (1) и учитывая, что T 0 = 0, получим (8) При числовых значениях заданных величин равенство (8) дает Отсюда находим искомую скорость. Ответ: = 1.53м/с.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |