АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ЛОГАРИФМЫ. ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ

Читайте также:
  1. II.1.1 Разновидности метонимии и ее функция в процессе создания газетной экспрессии
  2. Анализ временного ряда на стационарность (автокорреляционная функция)
  3. АРГУМЕНТ, ФУНКЦИЯ
  4. Артериолы, капилляры, венулы: функция и строение. Органоспецифичность капилляров. Понятие о гистогематическом барьере.
  5. Банк правительства как функция ЦБ
  6. В). каталитическая функция
  7. Волновая функция. Уравнение Шредингера
  8. ВЫДЕЛИТЕЛЬНАЯ (ЭКСКРЕТОРНАЯ) ФУНКЦИЯ СЛЮННЫХ ЖЕЛЕЗ. УЧАСТИЕ СЛЮННЫХ ЖЕЛЕЗ В ПОДДЕРЖАНИИ ГОМЕОСТАЗА ОРГАНИЗМА.
  9. Выделительная функция печени и желудочно-кишечного тракта
  10. ГЛАВА 14 ФУНКЦИЯ СЛЕЗООТВЕДЕНИЯ, МЕТОДЫ ИССЛЕДОВАНИЯ ПРОХОДИМОСТИ СЛЕЗНЫХ ПУТЕЙ. ПАТОЛОГИЯ СЛЕЗНЫХ ОРГАНОВ
  11. ГЛАВА1.7. УРАВНЕНИЯ ЧЕТЫРЕХПОЛЮСНИКА В ГИПЕРБОЛИЧЕСКИХ ФУНКЦИЯХ
  12. ГОЛОС, КАК ФУНКЦИЯ

 

1). Если то , (а > 0, а ¹1, b>0).

Логарифмы, взятые по основанию 10, называются десятичными, а по основанию е = 2,718281828459...- натуральными и обозначаются, соответственно, lg, ln.

Из определения логарифмов имеем

- основное логарифмическое тождество.

 

2). Свойства логарифмов

 

1. ; 2. ; 3. ; 4. ; 5. ; 6. ; 7. ; 8. - формула перехода к новому основанию 9. ; 10. ; 11. ; 12. ; 13. При a > 1 если N > 1; если 0 < N < 1 При 0 < a < 1наоборот, если N > 1; если 0 < N < 1.

 

Определение. Функция, обратная показательной функции , где , называется логарифмической функцией и обозначается

3) График логарифмической функции. Он симметричен графику

показательной функции относительно биссектрисы 1-го и 3-го координатных углов

  ,  

 

4) Графики логарифмической функции при различных основаниях a

3.22. ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)