|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Получение сложных эфиров 10-карбоксиметилен-9-акриданона
Реакцией этерификации 10-карбоксиметилен-9-акриданона в избытке соответствующего спирта в присутствии концентрированной серной кислоты в качестве катализатора были синтезированы этиловый, изопропиловый, бутиловый, пентиловый, изопентиловый и октиловый эфиры. Чистота полученных продуктов подтверждена методом ТСХ, а структура – методами ИК-спектроскопии и хромато-масс-спектрометрии (приложения А). Как видно из рисунков представленных в приложениях А, в ИК-спектрах полученных эфиров наблюдается сдвиг полосы поглощения, соответствующей колебаниям С=О-группы, от 1725 (соответствует свободной группе СООН) до 1740-1750 см-1 (соответствует сложноэфирной группе), что хорошо согласуется с литературными данными. [93] Следует отметить, что с наименьшим выходом не более (30 %) получается изопропиловый эфир 10-карбоксиметилен-9-акриданона. Таким образом, изопропиловый спирт может быть рекомендован в качестве растворителя, например, для промывки или перекристаллизации различных производных 10-карбоксиметилен-9-акриданона. Максимальные выходы эфиров (85 – 90 %) имеют место в случае использования бутанола-1 и пентанола-1. При получении октилового эфира наблюдается снижение выхода, что связано с образованием диоктилового эфира, который хорошо растворяет целевой продукт, но с трудом удаляется из реакционной массы даже при вакууме 7 мм рт. ст.
Масс-спектр бутилового эфира представлен на рисунке приложения А, в нем присутствует пик молекулярного иона (M+,m/z) 310, что соответствует брутто-формуле С19Н19NO3, и служит дополнительным подтверждением структуры синтезированного нами 10-карбоксиметилен-9-акриданона. Синтезированные эфиры 10-карбоксиметилен-9-акриданона были использованы нами для получения других производных этого соединения. В частности, взаимодействием этилового эфира 10-карбоксиметилен-9-акриданона с избытком полиэтиленгликоля-400 (ПЭГ-400) и эквимольным количеством ПЭГ-6000 при катализе этанолятом натрия, были получены соответствующие полиэтиленгликоливые эфиры 10-карбоксиметилен-9-акриданона. В хроматограмма указанных эфиров отсутствуют пятна соответствующие исходному 10-карбоксиметилен-9-акриданону и продуктам его термической диструкции. Эфиры ПЭГ-400 и ПЭГ-6000 образует при растворении в воде устойчивую ультрамикрогетерогенные (наноразмерные) дисперсные системы, в отличие от исходного этилового эфира, который в воде не растворим.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |