|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Конечномерные динамические системы. Динамическая система (ДС) – модель какого-либо процесса или явления во времени, в которой чётко определено состояние системы в данный момент времени и законы
Динамическая система (ДС) – модель какого-либо процесса или явления во времени, в которой чётко определено состояние системы в данный момент времени и законы эволюции. Комментарий. В основу теории динамических систем положены два понятия: понятие состояния (информация о системе в какой-то (начальный) момент времени и понятие оператора эволюции или динамики (правила, описывающего эволюцию системы во времени). Эволюцию можно наблюдать в пространстве состояний, или фазовом пространстве,
Для конечномерных динамических систем имеют место теоремы существования, единственности и непрерывной зависимости решения задачи Коши от параметров и начальных условий, которые сформулированы (при некоторых достаточных условиях) для невырожденных систем обыкновенных дифференциальных уравнений, записанных в нормальной форме. То есть некорректность здесь полностью исключена. Однако если условия этих теорем не выполняются, то даже линейная система обыкновенных дифференциальных уравнений может стать некорректной. Рассмотрим линейную систему Это случай аналогичен тому, что происходит в системах линейных алгебраических уравнений и будет подробно рассмотрен ниже. Но даже если условия этих теорем выполнены, в нелинейных конечномерных динамических системах, фазовое пространство которых имеет порядок три и выше может возникнуть ситуация, которая называется “некорректностью в большом”. Обычно считается, что фазовое пространство подчинено аксиоме Хаусдорфа (аксиома отделимости ): для любых двух точек Комментарий. Это значит, что даже в простых конечномерных фазовых пространствах с сохраняющимся или сжимающимся фазовым объемом возможно очень сложное движение. Оно возникает, если фазовые траектории нелинейной системы неустойчивы, то есть трубка расширяется и в условиях замкнутого и ограниченного фазового объема «размазывается» по всему фазовому пространству. В линейном случае это невозможно. В нелинейном случае, если эвклидова размерность фазового пространства не меньше трёх, возникает явление стохастичности динамических систем: в фазовом пространстве системы существуют неустойчивые направления, по которым они фазовые траектории разбегаются, и существуют устойчивые, по которым сбегаются.
Фазовые траектории не могут быть неустойчивыми одновременно по всем направлениям Комментарий. Решение дифференциального уравнения со странным аттрактором в фазовом пространстве выглядит как белый шум (случайный процесс). Это и называется “некорректностью в большом”. Корректным динамическим системам соответствуют два типа устойчивости. Устойчивость по Ляпунову: Пусть из начальной точки фазового пространства выпущена интегральная кривая x(t). Если
Асимптотическая устойчивость по Ляпунову: Орбитная устойчивость (устойчивость по Андронову). Пусть Задача Коши поставлена динамически корректно, если ее решение существует, единственно и устойчиво к малому изменению начальных данных. Если система неустойчива, но фазовый объём замкнут и ограничен, то имеет место устойчивость по Пуанкаре. Если
Пример. Рассмотрим пример задачи, некорректной в большом, на языке отображений. В фазовом пространстве расположим плоскость, которая называется бесконтактной или плоскостью Пуанкаре, т.е. такую, которую фазовая траектория пересекает не касаясь. Пусть но основные его свойства характерны для любой некорректной в большомзадачи. Запишем Свойства отображения пекаря: 1. Это, очевидно, растягивающее отображение в ограниченном фазовом объеме – единичном квадрате. 2. Неустойчивость к начальным условиям. Здесь есть резкоеразбегание близких траекторий: если первоначальная разница между точками была в 3. Бернуллиевость. Мы имеем дело с чисто случайным процессом, как в схеме испытаний Бернулли. 4. Эргодичность. Пусть точка
Комментарий. Вот рассуждение из фейнмановских лекций по физике: "Обычно думают, что недетерминированность, невозможность предсказать будущее --- это особенность квантовой механики, и именно с ней связывают представление о свободе воли и т.д. Но если бы даже наш мир был классическим, т.е. если бы законы механики были классическими, все равно из этого не следует, что то же или какие-то аналогичные представления не возникли бы. Да, конечно, с точки зрения классики, узнав местоположение и скорость всех частиц в мире (или в сосуде с газом), можно точно предсказать, что будет дальше. В этом смысле классический мир детерминирован. Но представьте теперь, что наша точность ограничена и что мы не знаем точно положение только одного из атомов; знаем, скажем, его с ошибкой в одну миллиардную. Тогда, если он столкнется с другим атомом, неопределенность в знании его координат после столкновения возрастет. А следующее столкновение еще сильнее увеличит ошибку. Так что если сначала ошибка и была еле заметной, то все равно вскоре она вырастает до огромнейшей неопределенности. Правильнее будет сказать, что для данной точности (сколь угодно большой, но конечной) можно всегда указать такой большой промежуток времени, что для него становится невозможным сделать предсказания. И этот промежуток (в этом вся соль) не так уж велик... Время с уменьшением ошибки растет только логарифмически, и оказывается, что за очень и очень малое время вся наша информация теряется". Американское издание фейнмановских лекций вышло в 1963 г. В том же году в "Journal of the Atmospheric Sciences" появилась статья американского метеоролога Эдварда Лоренца, положившая начало новому направлению в естествознании --- исследованию хаоса в детерминированных системах. Были приведены самые яркие примеры некорректных задач, спектр которых, на самом деле, значительно шире.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.639 сек.) |