АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Классификации катализаторов

Читайте также:
  1. II. Клинико-психологические классификации.
  2. Валы и оси. Общие сведения. Характеристика, классификации, материалы, термообработка.
  3. Виды предприятий розничной торговли. Факторы, которые лежат в основе классификации розничных магазинов.
  4. Выделяют несколько критериев классификации
  5. Другие способы классификации документов.
  6. Другим важным отличием ферментов от катализаторов небелковой природы является их высокая специфичность, т.е. избирательность действия.
  7. Единая система классификации и кодирования ТЭСИ
  8. Задача классификации образов. Обучение с учителем
  9. Какие бывают вина. Сорта, классификации. Разные вина в разных регионах
  10. Классификации
  11. Классификации биноклей
  12. Классификации в страховании

Существуют различные типы классификации катализаторов, в основе которых лежит определенная совокупность свойств или характеристик. Наиболее широко используется классификация по типу веществ, которые являются катализаторами.

1.3.2.1 Классификация в зависимости от химической природы веществ, являющихся катализаторами. Различают следующие группы катализаторов:

1. Металлы (компактные или массивные, сплавы, скелетные, нанесенные) – гетерогенные катализаторы.

Так, например, металлы VIII группы (Fe, Ni, Co, Pt, Pd) используются в качестве катализаторов гидрирования ненасыщенных соединений (главным образом алкенов, алкинов и ароматических соединений). Серебро является катализатором окисления и окислительного дегидрирования (например, синтез формальдегида из метанола).

 

 
 

Рис. 2. Схема механизма действия химотрипсина

 

В зависимости от формы и способа приготовления металлические катализаторы могут

быть компактными (массивными), скелетными, нанесенными.

Платиновая сетка (компактный металл в виде переплетенных нитей)– катализатор окисления аммиака в оксиды азота (стадия технологии получения азотной кислоты). Известный катализатор гидрирования – никель Ренея - это скелетный катализатор, который получают при выщелачивании сплава никель-алюминий.

Нанесенные катализаторы – это, например, платина или палладий на активированном угле (Pt/C, Pd/C), палладий на оксиде алюминия (Pd/Al2O3) и т.д.

2. Твердые бинарные соединения металлов МmЭn, где Э – О, S, Se, Te, As, P, C, N, Si, B, гетерогенные катализаторы.

Из этой группы чаще всего используются оксиды или халькогениды металлов полупроводникового типа. Примерами служат оксиды: MgO, ZnO, Fe2O3, Cr2O3, WO3, MoO3, V2O5 и др. Очень большую группу составляют смешанные оксидные катализаторы. Так, в производстве серной кислоты в настоящее время используются катализаторы, основу которых составляет пентаоксид ванадия.

Катализаторы этого типа широко применяют в процессах окисления, гидрирования, дегидрирования, синтезах из синтез-газа. Например, в синтезе метанола катализатором слу-

CO + 2H2 → CH3OH

жит смесь оксидов:

Cr2O3∙ZnO (высокотемпературный катализатор, суммарное давление газов 25-30 МПа, температура 300-4000С), CuO∙ZnO∙Al2O3 (низкотемпературный катализатор, условия более мягкие: суммарное давление 5-10 МПа., температура 220-2700С). Однако, последний катализатор, в отличие от предыдущего, чрезвычайно чувствителен к наличию серосодержащих примесей в исходных газах.

Смесь оксидов молибдена, висмута, железа и фосфора в различных соотношениях с модифицирующими добавками (MoO3∙Bi2O3∙Fe2O3∙P2O5) – катализатор окислительного аммонолиза пропилена в акрилонитрил:

 

CH2=CH-CH3 + NH3 + 1.5 O2 → CH2=CH-CN + 3H2O

Сульфиды молибдена и вольфрама состава MoxSy + WxSy являются хорошими катализаторами в процессах гидроочистки (обессеривания) нефтяных фракций –– в присутствии этих катализаторов происходит восстановление серосодержащих органических соединений до сероводорода.

3. Кислоты и основания (гомогенные и гетерогенные катализаторы) – протонные кислоты Бренстеда (НА) в водных и неводных средах, апротонные кислоты Льюиса – Усановича (BF3, RI), протонные и апротонные центры твердых оксидов (оксиды алюминия, алюмосиликаты), любые типы оснований (нуклеофильные катализаторы) в том числе твердые – МgO, CaCO3, анионообменные смолы.

На таких катализаторах протекают реакции кислотно-основного катализа, а именно крекинг нефтяных фракций (на алюмосиликатах), дегидратация и гидратация, синтез аминов из спиртов (на Al2O3), этерификация спиртов и кислот, конденсация альдегидов и кетонов, полимеризация ненасыщенных соединений, различного рода поликонденсации, перегруппировки и т.д..

4. Комплексы металлов, включая соли (гомогенные и гетерогенные катализаторы). Следует отметить, что соли переходных металлов – это, как правило, комплексные соединения.

Рассмотрим, например, Вакер-процесс (окисление этилена в ацетальдегид), который протекает в водном растворе системы PdCl2-CuCl2. В твердом виде α-форма хлорида палладия (PdCl2)n является линейным координационным полимером, в котором атомы металла связаны хлоридными мостиками:

В растворе в присутствии хлорид-ионов он деполимеризуется с образованием плоско- квадратных анионных комплексов палладия и именно эти анионные комплексы являются

составной частью каталитической системы и участвуют в каталитическом цикле.

В гидрировании алкинов и алкенов активны фосфиновые комплексы родия состава RhCl(PPh3)3.

В процессе карбонилирования метанола в уксусную кислоту (процесс фирмы Монсанто) истинным катализатором являются карбонильные комплексы Rh(I).

Катализатором реакции Реппе (карбонилирование алкинов в присутствии воды (гидрокарбоксилирование), спиртов или аминов) является тетракарбонил никеля состава Ni(CO)4 – довольно лабильный комплекс, имеющий тетраэдрическое строение.

5. Ферменты (гомогенные и гетерогенные).

Ферменты (энзимы) – биологические катализаторы обладают уникальными свойствами: высокой производительностью в расчете на один реакционный центр и селективностью, связанной со специфичностью действия. Работают ферменты в очень мягких условиях, при атмосферном давлении и температуре до 40о (см. выше).

1.3.2.2 Классификация катализаторов по степени дискретности (индивидуальности) и коллективности действия.

Взаимодействие катализатора с реагентами в гомогенно-каталитических процессах носит в основном дискретный характер (взаимодействие с одним активным центром катализатора), особенно при низких концентрациях катализатора. Взаимодействие реагентов с активными центрами на поверхности гетерогенного катализатора подвергается влиянию специфических эффектов твердого тела (большое количество ядер и электронов). Здесь главную роль играют коллективные эффекты. Поэтому катализаторы можно классифицировать по степени дискретности.

Коллективные эффекты выражены сильно в: а) массивных (компактных) металлах, б) твердых растворах (сплавах).

Коллективные эффекты выражены слабее в: а) полупроводниковых оксидах, б) солях металлов в кристаллическом состоянии (HgCl2, MoS2, PdCl2, CuCl).

Дискретные свойства выражены сильно в: а) кислотных катализаторах в растворах, б) комплексах металлов в растворах, в) комплексах металлов, химически связанных с поверхностью носителя. г) твёрдых оксидах непереходных металлов с кислотными свойствами.

Фактически в ряду металлы → оксиды металлов → кислотные катализаторы и комплексные соединения происходит уменьшение влияния коллективных эффектов и увеличение влияния дискретных свойств. Такое деление не полностью совпадает с делением на гомогенные и гетерогенные катализаторы.

1.3.2.3 Классификация катализаторов по специфике электронного строения

1. d–Катализаторы – катализаторы на основе переходных металлов, имеющие d–электроны и энергетически выгодные d–орбитали.

2. s,p-Катализаторы – катализаторы, в активном центре которых находится элемент, имеющий валентные S и P – орбитали(электроны). Это протонные и апротонные кислоты (НХ, RX, R+, BF3, оксиды алюминия, алюмосиликаты), а также основания Бренстеда (O, N, S, P, Hal – содержащие ионы и молекулы).

Металлы побочных подгрупп I и II групп Периодической системы и их соединения относятся к промежуточному типу.

Группа d–катализаторов обладает, несомненно, более широким спектром каталитического действия из-за большего числа энергетически доступных орбиталей: (n-1) d, n s, n p и электронов, участвующих в элементарных стадиях каталитических процессов.

 

2. ВЫБОР КАТАЛИЗАТОРОВ

2.1 Современное содержание термина «активация»

Все теории катализа старались ответить на следующие вопросы:

  1. Каким образом катализатор меняет реакционную способность реагентов, обеспечивая их превращение в нужном направлении?
  2. Как найти катализатор для желаемой реакции?

 

Ответ на второй вопрос связан с ответом на первый. Современный взгляд на проблему активации имеет в основе химический подход, учитывающий особенности гетерогенного катализа: влияние носителя (коллективные свойства), особенности взаимодействия промежуточных соединений на поверхности гетерогенного катализатора, диффузия адсорбированных молекул в подповерхностные слои катализатора, изменение катализатора под воздействием реакционной среды (реагенты, продукты) и т. д..

Первым четко сформулировал идею «оптимального» взаимодействия между реагентами и катализатором Пьер Сабатье в кн. «Катализ в органической химии» (1913 г.). Энергия образования интермедиата должна быть не слишком мала и не слишком велика. Если реакция образования интермедиата эндотермична, а энтропия понижается, то концентрация интермедиата будет очень мала, а следовательно, скорость стадии его превращения будет низка из-за низкой концентрации. Если образование интермедиата будет очень выгодно, то его концентрация будет велика, скорость его дальнейшего превращения также будет низка из-за низкой реакционной способности, поскольку он очень прочный. И энергия активации стадии его превращения будет велика.

Основы теории координационной химии важны не только для выбора металлокомплексных катализаторов и понимания основ технологии приготовления и регенерации таких катализаторов, но также для понимания процессов, происходящих на поверхности металлических и оксидных гетерогенных катализаторов. Химия поверхностных промежуточных соединений не существенно отличается от химии координационных соединений в растворах. Понимание этого обстоятельства – важнейший результат развития теории каталитической химии во второй половине 20 века.

Так как любой интермедиат в каталитическом процессе – это частица, в которой субстрат связан с металлом-катализатором, то фактически мы имеем дело с координационным соединением. Такому соединению присущи все основные свойства, характеризующие обычные координационные соединения. И поэтому о прочности связи катализатор-субстрат, и об активации субстрата можно судить с тех же позиций, которые применимы в координационной химии для связи металл-лиганд, для характеристики изменений лиганда (т.е. его активации).

Итак, в координационной химии мы имеем дело с металлом-комплексообразователем (или группой металлов – это уже кластерная химия). Атомы, окружающие металл-комплексообразователь,называются лигандами. Лиганды образуют внутреннюю координационную сферу.

Центральный атом и окружающие его лиганды называются комплексом. Важно: комплексы не теряют своих свойств при переходе из одной фазы в другую, например, при растворении соединения внутренняя координационная сфера часто остается без изменений, хотя возможно замещение некоторых лигандов на молекулы растворителя, гидролиз и т.д.

 

2.1.1 Классификация комплексов

Комплексы классифицируют по различным признакам.

Классификация комплексов по химической специфике лигандов.

1. Атомы элементов в качестве лигандов (H, O, N, C, S, Se, F, Cl и др.). Некоторые из них – координируются в виде одно- или двухзарядных анионов, другие не существуют в индивидуальном состоянии в мягких условиях (N, O, S).

ПРИМЕРЫ КОМПЛЕКСОВ

А) Гидридные комплексы (например, гидриды рения). В комплексе рения [ReH9]2- шесть атомов водорода находятся в вершинах тригональной призмы, а три атома водорода образуют правильный треугольник, лежащий на одинаковых расстояниях от обоих оснований призмы. Металл-комплексообразователь находится в центре этого треугольника.

Б) Галогенидные комплексы:

Например, соединение K2PdCl4 является анионным комплексом и содержит тетрахлоропалладат-анион (PdCl4)2- (см. рис. выше).

В) Халькогенидные комплексы, т.е. содержащие серу, селен, теллур, связанные с центральным атомом. Примеры:

Как правило, комплексы содержат лиганды разного типа или лиганды, состоящие из разных атомов. Например, карбонилгидридные комплексы содержат одновременно и карбонильные (СО), и гидридные (Н-) лиганды, как это видно на примере карбонилгидридов хрома [(CO)5Cr]2(μ-H) или рения (CO)3Re(μ-H)3Re(CO)3.

:

В связи с вышесказанным такая классификация употребима главным образом для галогенидных или халькогенидных комплексов.

2. В качестве лигандов часто выступают отрицательно заряженные группы атомов – анионные лиганды –

 

Примером может служить кластерный комплекс платины состава Pt4(OCOCH3)8 :

В кластере четыре атома платины образуют квадрат с коротким расстоянием металл-металл. По каждой стороне квадрата координированы по две мостиковых ацетатных группы. В координации каждой ацетатной группы участвуют в одинаковой мере оба карбоксилатных атома кислорода, поставляя для образования донорно-акцепторной связи по паре электронов с каждого атома кислорода.

3. Лигандами могут быть устойчивые двухатомные и многоатомные молекулы:

N2, O2, CO, NO, NH3, NR3, H2O, R2O, SO2, CS2, PR3, RCN, C6H6

ПРИМЕРЫ:

Ni(CO)4 Co2(CO)8

В тетракарбониле никеля Ni(CO)4 атом металла помещен в центр тетраэдра, образуемого 4 атомами углерода карбонильных групп, поэтому комплекс имеет тетраэдрическое строение. Структура биядерного дикобальтоктакарбонила (Co2(CO)8 ) в твердом состоянии содержит две частицы Со(СО)3, связанные двумя карбонильными мостиковыми группами. В растворе Co2(CO)8 «мостиковая» форма находится в равновесии с безмостиковой, показанной выше, в которой каждый атом кобальта имеет квадратно-пирамидальное окружение, причем основание квадратной пирамиды образуют 4 атома углерода карбонильных групп, а вершину этой пирамиды – второй атом кобальта.

В сэндвичевых соединениях – дибензолхроме (C6H6)2Cr и ферроцене (C5H5)2Fe атом металла располагается между двумя плоскими ароматическими молекулами, каждая из которых связана с атомом металла по π-типу:

4. Лигандами могут служить молекулы или фрагменты молекул, которые не существуют в свободном состоянии или являются чрезвычайно неустойчивыми (карбены, карбины, нитрены и т.д.)

Карбеновые комплексы:

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.)