|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вопрос 1. Биологические системы, их фундаментальные свойстваБиологические системы, их фундаментальные свойства. Эволюционно обусловленные уровни организации жизни. Элементарные единицы, элементарные явления на различных уровнях организации жизни БИОЛОГИЧЕСКИЕ СИСТЕМЫ - биол. объекты разл. сложности (клетки и ткани, органы, системы органов и организмы, биоценозы и экосистемы, вплоть до биосферы в целом), имеющие, как правило, неск. уровней структурпо-функц. организации. Биологические объекты как системы. С позиций системного подхода биологические объекты условно подразделяются на корпускулярные (дискретные) и «жесткие» системы. Корпускулярные (дискретные) системы состоят из множества относительно автономных и в определенной мере взаимозаменимых единиц. При этом связи между элементами множества могут быть слабыми или практически отсутствовать. Главным системообразующим фактором является их отношение к среде, которое «заставляет» их вести себя сходным образом (особи в популяции, форменные элементы в потоке крови, гены в генофонде вида). Такие системы отличаются большой пластичностью: в силу относительной независимости их элементы способны к разнообразным перестановкам и комбинаторике. Благодаря этим свойствам значительно облегчается приспособление систем к ненаправленно изменяющимся условиям среды. Процессы отбора в них протекают с высокой эффективностью. «Жесткие» системы характеризуются жестко фиксированными (не в механическом, а в организационном смысле) связями между составляющими их элементами и подсистемами. При этом функциональная полноценность каждой части системы является необходимым условием функционирования системы в целом. Как правило, уровень организации таких систем значительно превосходит таковой составляющих их частей. Однако, в плане гибкости, способности к быстрым перестройкам они уступают корпускулярным системам. При полной «жесткости» связей эффективность функционирования такого рода систем определяется «принципом наименьших», согласно которому в системе имеется наиболее слабое звено, лимитирующее ее «жизнедеятельность» (пр.: ферментативные ансамбли метаболизма, системы органов животных и человека). В действительности эти два полярных типа систем в «чистом» виде почти не встречаются. При анализе сложных биологических объектов (биоценозы, многоклеточные организмы и др.) выявлено несколько способов их гармоничного сочетания. При первом способе имеет место закономерное чередование корпускулярного и жесткого типов организации при переходе от низших структурных уровней к более высоким: диплоидный набор хромосом (корпускулярность), взаимоотношения ядра, цитоплазмы и плазмалеммы (жесткие связи), множество клеток одной ткани (корпускулярность), взаимоотношения определенных тканевых структур в органе (жесткие связи), набор органов (корпускулярность), взаимоотношения систем органов (жесткие связи), множество особей одного пола (корпускулярность), взаимодополняемость полов (жесткие связи). Другой способ совмещения корпускулярного и «жесткого» принципов организации реализуется в биологических системах «звездного» типа, причем, на одном структурном уровне. В «центре» такой системы находится орган (как правило, характеризующийся эволюционной консервативностью), связанный тесными связями с определенным множеством «периферических» органов (признак «жестких» систем). Вместе с тем «периферические» органы, находясь в зависимости от «центрального», совершенно независимы друг от друга, прежде всего, в эволюционном плане. Это означает, что структуры, располагающиеся на периферии «звездных» систем, могут свободно эволюционировать и приводить к совершенно различным эволюционным результатам (признак корпускулярных систем). Примером может служить эндокринная система позвоночных животных. Так, «ось» гипоталамус - гипофиз - половые железы (центр системы) определяет развитие вторичных половых признаков - рога у оленей, грива у львов, характерное оперение у птиц, голосовой аппарат и гребень - у земноводных, яркая расцветка - у рыб (периферия системы). Системный подход к биологическим объектам позволил выявить ряд присущих им характерных особенностей. Обмен веществ между элементами (подсистемами) внутри системы и системой и окружающей средой, организованный во времени и в пространстве и сопровождающийся преобразованием элементов системы; рециркуляция веществ на всех уровнях организации системы. Уровни организации живой материи — иерархически соподчиненные уровни организации биосистем, отражающие уровни их усложнения. Чаще всего выделяют шесть основных структурных уровней жизни: молекулярный, клеточный, организменный,популяционно-видовой, биогеоценотический и биосферный. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |