АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос 1. Биологические системы, их фундаментальные свойства

Читайте также:
  1. A1Какое из высказываний, приведённых ниже, содержит ответ на вопрос: «Почему немцы постоянно простреливали трассу, проложенную по льду Финского»?
  2. I. Разбор основных вопросов темы.
  3. I. Разбор основных вопросов темы.
  4. Альтернативный вопрос
  5. Билет №14 вопрос №2 Праздники народов мира.Карнавал
  6. Билет №17 вопрос №1 Биография Михаила Ивановича Глинки.
  7. Билет №17 вопрос №2 Искусство византийской мозаики
  8. Билет №19 вопрос 1 Героический эпос. Карело-финский эпос «Калевала»
  9. Билет №19 вопрос №2 Скульптура Тропической и Южной Африки
  10. Билет №20 вопрос №2 Религиозные праздники и обряды
  11. Билет№ 13 вопрос №1 Биография М.П.Мусоргского
  12. Билет№11 вопрос№1 Биография П.И. Чайковского

Биологические системы, их фундаментальные свойства. Эволюционно обусловленные уровни организации жизни. Элементарные единицы, элементарные явления на различных уровнях организации жизни

БИОЛОГИЧЕСКИЕ СИСТЕМЫ - биол. объекты разл. сложности (клетки и ткани, органы, системы органов и организмы, биоценозы и экосистемы, вплоть до биосферы в целом), имеющие, как правило, неск. уровней структурпо-функц. организации. Биологические объекты как системы. С позиций системного подхода биологические объекты условно подразделяются на корпускулярные (дискретные) и «жесткие» системы. Корпускулярные (дискретные) системы состоят из множества относительно автономных и в определенной мере взаимозаменимых единиц. При этом связи между элементами множества могут быть слабыми или практически отсутствовать. Главным системообразующим фактором является их отношение к среде, которое «заставляет» их вести себя сходным образом (особи в популяции, форменные элементы в потоке крови, гены в генофонде вида). Такие системы отличаются большой пластичностью: в силу относительной независимости их элементы способны к разнообразным перестановкам и комбинаторике. Благодаря этим свойствам значительно облегчается приспособление систем к ненаправленно изменяющимся условиям среды. Процессы отбора в них протекают с высокой эффективностью. «Жесткие» системы характеризуются жестко фиксированными (не в механическом, а в организационном смысле) связями между составляющими их элементами и подсистемами. При этом функциональная полноценность каждой части системы является необходимым условием функционирования системы в целом. Как правило, уровень организации таких систем значительно превосходит таковой составляющих их частей. Однако, в плане гибкости, способности к быстрым перестройкам они уступают корпускулярным системам. При полной «жесткости» связей эффективность функционирования такого рода систем определяется «принципом наименьших», согласно которому в системе имеется наиболее слабое звено, лимитирующее ее «жизнедеятельность» (пр.: ферментативные ансамбли метаболизма, системы органов животных и человека). В действительности эти два полярных типа систем в «чистом» виде почти не встречаются. При анализе сложных биологических объектов (биоценозы, многоклеточные организмы и др.) выявлено несколько способов их гармоничного сочетания. При первом способе имеет место закономерное чередование корпускулярного и жесткого типов организации при переходе от низших структурных уровней к более высоким: диплоидный набор хромосом (корпускулярность), взаимоотношения ядра, цитоплазмы и плазмалеммы (жесткие связи), множество клеток одной ткани (корпускулярность), взаимоотношения определенных тканевых структур в органе (жесткие связи), набор органов (корпускулярность), взаимоотношения систем органов (жесткие связи), множество особей одного пола (корпускулярность), взаимодополняемость полов (жесткие связи). Другой способ совмещения корпускулярного и «жесткого» принципов организации реализуется в биологических системах «звездного» типа, причем, на одном структурном уровне. В «центре» такой системы находится орган (как правило, характеризующийся эволюционной консервативностью), связанный тесными связями с определенным множеством «периферических» органов (признак «жестких» систем). Вместе с тем «периферические» органы, находясь в зависимости от «центрального», совершенно независимы друг от друга, прежде всего, в эволюционном плане. Это означает, что структуры, располагающиеся на периферии «звездных» систем, могут свободно эволюционировать и приводить к совершенно различным эволюционным результатам (признак корпускулярных систем). Примером может служить эндокринная система позвоночных животных. Так, «ось» гипоталамус - гипофиз - половые железы (центр системы) определяет развитие вторичных половых признаков - рога у оленей, грива у львов, характерное оперение у птиц, голосовой аппарат и гребень - у земноводных, яркая расцветка - у рыб (периферия системы).

Системный подход к биологическим объектам позволил выявить ряд присущих им характерных особенностей. Обмен веществ между элементами (подсистемами) внутри системы и системой и окружающей средой, организованный во времени и в пространстве и сопровождающийся преобразованием элементов системы; рециркуляция веществ на всех уровнях организации системы.
Итеративность - многократное повторение одной и той же операции (размножение организмов, репликация нуклеиновых кислот, циклы биохимических реакций, ферментативный катализ и др.).
Дискретность. Биосистемы состоят из набора относительно автономных структурных единиц различного ранга. Их разнообразные функции обеспечиваются путем комбинации небольшого числа стандартных функциональных блоков - идентичных для большинства организмов молекул и надмолекулярных комплексов. Дискретность биологических систем во времени заключается в том, что время их существования конечно. Важной особенностью временной организации биологических систем является то, что продолжительность существования составляющих их подсистем и элементов, как правило, значительно различаются. При этом наблюдается следующая закономерность: чем ниже ранг подсистемы (элемента), тем короче время ее (его) жизни. Однако прекращение существования подсистемы (элемента) как физической единицы не означает более или менее быстрое исчезновение множества элементов, членом которого она (он) является. Их количественный баланс и качественные характеристики поддерживаются сформировавшимися в эволюции специальными механизмами (размножение, физиологическая регенерация и др.), благодаря чему и обеспечивается целостность и преемственность биологических систем во времени. Наиболее наглядно эта закономерность прослеживается на организменном (онтогенетическом) уровне организации живой природы. Смерть является неизбежным финалом индивидуального развития отдельных особей. Вместе с тем, благодаря их способности к размножению вид, который они представляют, может существовать длительное время. Избыток структурных элементов и связей между ними позволяет повысить надежность биосистем и их устойчивость к повреждающим факторам, а также обеспечить им свойство пластичности - способности легко переходить из одного режима функционирования в другой. Наследственность и изменчивость одновременно обеспечивают хранение, использование и передачу биологической информации, а также необходимый уровень ее неоднородности (разнообразия). Способность к самоорганизации и саморазвитию - формирование целостных организмов на основе реализации собственной наследственной информации и самоупорядочение составляющих их элементов и подсистем. Для поддержания высокого уровня упорядоченности элементов системы необходим постоянный приток веществ и энергии из окружающей среды. Наряду с вышеуказанными к характерным свойствам биосистем необходимо отнести раздражимость и возбудимость, способность к адаптации и самовоспроизведение (размножение).

Уровни организации живой материи — иерархически соподчиненные уровни организации биосистем, отражающие уровни их усложнения. Чаще всего выделяют шесть основных структурных уровней жизни: молекулярный, клеточный, организменный,популяционно-видовой, биогеоценотический и биосферный.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)