|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ВОПРОС 15Закономерности существования клетки во времени. Жизненный цикл клетки, его варианты.
Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание ее жизненного цикла (клеточного цикла). Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти. Обязательным компонентом клеточного цикла является митотический (пролиферативный) цикл — комплекс взаимосвязанных и детерминированных хронологически событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления, Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специальных функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки неопределенна: она может либо начать подготовку к митозу, либо стать на путь специализации. Морфология и фазы процесса разделения ядерного вещества материнской клетки между дочерними (собственно митоз) известны со второй половины прошлого столетия (И. Д. Чистяков, В, Флемминг, Э. Страсбургер). Представления о митотическом цикле оформились после 1953 г., когда было установлено, что предмитотический синтез ДНК происходит в интерфазе и отделен во времени от начала и окончания митоза. В митотическом цикле выделены четыре периода — митоз (М), а также постмитотический (G1), синтетический (S) и предмитотический (G2) периоды интерфазы. Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих длительность М составляет 1 —1,5 ч, G2— 2—5 ч, S — 6—10 ч. Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл служит универсальным механизмом воспроизведения клеточной организации эукариотического типа. Главные события митотического цикла заключаются в следующем: 1) редупликация (самоудвоение) наследственного материала материнской клетки; 2) равномерное распределение этого материала между дочерними клетками. При этом закономерно изменяются химическая и морфологическая организация хромосом — ядерных структур, в которых сосредоточено более 90% наследственного материала эукариотической клетки.
Жизненный цикл клетки:
ВОПРОС 17 Онтогенез. Периодизация онтогенеза. Онтогенез (от греч. ontos — существо, genesis — развитие) — это полная история (цикл) развития индивидуального организма (животного или растения), начинающаяся с образования давших ему начало половых клеток и заканчивающаяся его смертью. Представления об онтогенезе (индивидуальной истории развития организма) основаны на данных о росте организма, дифференцировке его клеток и морфогенезе. Следовательно, онтогенез есть категория индивидуальная. В противоположность онтогенезу видовой категорией является филогенез (от греч. phyle — племя, genesis — развитие) под которым со времен Э. Геккеля, впервые обосновавшего этот термин, понимают историю возникновения и развития вида (животных или растений). Между онтогенезом и филогенезом существует тесная связь, которая отражена в так называемом биогенетическом законе (Э. Геккель, Ф. Мюллер), который, как показали исследования, в принципе справедлив. Поскольку онтогенез индивидуума определяется определенными чертами филогенетического развития вида, к которому принадлежит данный индивидуум, то можно сказать, что онтогенез является основой филогенеза, с одной стороны, и результатом филогенеза — с другой. Изучение фундаментальных основ онтогенеза имеет важное значение для понимания биологии и эволюции организмов. Однако, чтобы лучше узнать современное состояние учения об онтогенезе, рассмотрим вначале, как понимали рост и развитие организма в прошлые времена на примере организма человека. Первые представления о росте и развитии восходят ко временам античного мира. Еще Гиппократ (460-377 гг. до н. э.) предполагал, что яйцеклетки уже содержат полностью сформированный организм, но в очень уменьшенном виде. Это представление затем нашло продолжение в учении о преформизме (от лат. preformatio — предобразование), которое особенно популярным оказалось в XVII—XVIII вв. Сторонниками преформизма были Гарвей, Мальпиги и многие другие видные биологи и медики того времени. Для преформистов спорный вопрос заключался лишь в том, в каких половых клетках преформирован организм — женских или мужских. Тех, кто отдавал предпочтение яйцеклеткам, называли овистами, а тех, кто большое значение придавал мужским половым клеткам, называли анималькулистами. Преформизм — это метафизическое учение от начала до конца, ибо оно отрицало развитие. Решающий удар преформизму нанес Ш. Бонне (1720-1793), который открыл в 1745 г. партеногенез на примере развития тлей из неоплодотворенных яиц. После этого преформизм уже не мог оправиться и стал терять свое значение. В античном мире возникло и другое учение, противоположное преформизму и получившее впоследствии название эпигенеза (от греч. epi — после, genesis — развитие). Как и преформизм, эпигенез большое распространение получил также в XVII—XVIII вв. В распространении эпигенеза большое значение имели взгляды К. Ф. Вольфа (1733—1794), обобщенные в его книге «Теория развития» (1759). К. Ф. Вольф считал, что в яйце нет ни преформи-рованного организма, ни его частей, и что яйцо состоит из перво-ночально однородной массы. В отличие от преформистов взгляды К- Ф. Вольфа и других сторонников эпигенеза для своего времени были прогрессивны, т. к. содержали мысль о развитии. Однако в дальнейшем появились новые моменты. В частности, в 1828 г. К. Бэр опубликовал свой труд «История развития животных», в котором показал, что содержимое яйца не однородно, т. е. структурировано, причем степень структурированности возрастает по мере развития зародыша. Таким образом, К. Бэр показал несостоятельность как преформизма, так и эпигенеза. В наше время рост организма понимают в качестве постепенного увеличения его массы в результате увеличения количества клеток. Рост можно измерить, построив на основе результатов измерений кривые размеров организма, массы, сухой массы, количества клеток, содержания азота и других показателей. Что же касается дифференциации клеток, то это процесс, благодаря которому одни клетки становятся морфологически, биохимически и функционально отличными от других клеток. Размножение и дифференцировка одних клеток всегда координированы с ростом и дифференцировкой других. Оба эти процесса происходят на протяжении всего жизненного цикла организма. Поскольку дифференцирующиеся клетки изменяют свою форму, а в изменения формы вовлекаются группы клеток, то это сопровождается мор-фогенезом, представляющим собой совокупность процессов, определяющих структурную организацию клеток и тканей, а также общую морфологию организмов. Таким образом, рост является результатом количественных изменений в виде увеличения количества клеток (массы тела) и качественных — в виде дифференци-ровки клеток и морфогенеза. Понятия о росте организмов (размножении клеток), дифферен-цировке клеток и о морфогенезе позволяют сформулировать заключение о развитии как основополагающей особенности онтогенеза. Развитие — это качественные изменения организмов, которые определяются дифференцировкой клеток и морфогенезом, а также биохимическими изменениями в клетках и тканях, обеспечивающими в ходе онтогенеза прогрессивные изменения индивидов. В рамках современных представлений развитие организма понимают в качестве процесса, при котором структуры, образовавшиеся ранее, побуждают развитие последующих структур. Процесс развития детерминирован генетически и теснейшим образом связан со средой. Следовательно, развитие определяется единством внутренних и внешних факторов. Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой, в связи с чем различают прямое и непрямое развитие. Прямое развитие организмов в природе встречается в виде неличиночного и внутриутробного развития, тогда как непрямое развитие наблюдается в форме личиночного развития. Под личиночным развитием понимают непрямое развитие, поскольку организмы в своем развитии имеют одну или несколько личиночных стадий. Личиночное развитие широко распространено в природе и характерно для насекомых, иглокожих, амфибий. Личинки этих животных ведут самостоятельный образ жизни, подвергаясь затем превращениям. Поэтому это развитие называют еще развитием с метаморфозами (см. ниже). Неличиночное развитие характерно для организмов, развивающихся прямым образом, например для рыб, пресмыкающихся и птиц, яйца которых богаты желтком (питательным материалом). Благодаря этому в яйцах, откладываемых во внешнюю среду, проходит значительная часть онтогенеза, метаболизм зародышей обеспечивается развивающимися провизорными органами, представляющими собой зародышевые оболочки (желточный мешок, амнион, аллантоис). Внутриутробное развитие также характерно для организмов, развивающихся прямым путем, например для млекопитающих, включая человека. Поскольку яйцеклетки этих организмов очень бедны питательными веществами, то все жизненные функции зародышей обеспечиваются материнским организмом посредством образованных из тканей матери и зародыша провизорных органов, среди которых главным является плацента. Эволюционно внутриутробное развитие является самой поздней формой, однако оно наиболее выгодно для зародышей, т. к. наиболее эффективно обеспечивает их выживание. Онтогенез подразделяют на проэмбриональный, эмбриональный и постэмбриональный периоды. В случае человека, а иногда и высших животных, период развития до рождения часто называют пре-натальным или антенатальным, после рождения — постнатальным. В пределах пренатального периода выделяют начальный (первая неделя развития), зародышевый и плодный периоды. Развивающийся зародыш до образования зачатков органов называют эмбрионом, после образования зачатков органов — плодом. ВОПРОС 19 2. Мейоз. Фазы мейоза, их характеристика и значение. Рекомбинация наследственного материала, ее медицинское и эволюционное значение. Мейоз (от греч. meiosis - уменьшение) — особый способ деления клеток, деление созревания, в результате которого происходят редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния в гаплоидное. Мейоз — это особый тип дифференцировки, специализации клеток, который приводит к образованию половых клеток. Этот процесс занимает два клеточных цикла при отсутствии синтеза ДНК во втором мейотическом делении. Необходимо отметить, что мейоз представляет собой универсальное явление, характерное для всех эукариотических организмов. При мейозе происходит не только редукция числа хромосом до гаплоидного их числа, но и осуществляется чрезвычайно важный генетический процесс — обмен участками между гомологичными хромосомами, процесс, получивший название кроссинговера. Существует несколько разновидностей мейоза. При зиготном типе мейоза, характерном для аскомицетов, базимицетов, некоторых водорослей, споровиков и др., для которых в жизненном цикле преобладает гаплоидная фаза, две клетки — гаметы — сливаются, образуя зиготу с двойным (диплоидным) набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делится, в результате образуются четыре гаплоидные клетки, которые продолжают размножаться. Споровый тип мейоза встречается у высших растений, клетки которых имеют диплоидный набор хромосом. В данном случае в органах размножения растений образовавшиеся после мейоза гаплоидные клетки еще несколько раз делятся. Другой тип мейоза, гаметный, происходит во время созревания гамет — предшественников зрелых половых клеток. Он встречается у многоклеточных животных, среди некоторых низших растений. В случае гаметного мейоза при развитии организма происходит выделение клонов герминативных клеток, которые впоследствии будут дифференцироваться в половые клетки. И только клетки этих клонов будут при созревании подвергаться мейозу и превращаться в половые клетки. Следовательно, все клетки развивающихся многоклеточных животных организмов можно разделить на две группы: соматические, из которых будут образовываться клетки всех тканей и органов, и герминативные, которые дадут начало половым клеткам. Такое выделение герминативных клеток (гоноцитов) обычно происходит на ранних стадиях эмбрионального развития (рис. 334). Так, детерминация гоноцитов у рачка циклопа осуществляется уже на первом делении зиготы: одна из двух клеток дает начало терминальным клеткам. У аскариды герминативные клетки, или клетки «зародышевого пути» (А. Вейсман), выделяются на стадии 16 бластомеров, у дрозофилы — на стадии бластоцисты, у человека первичные половые клетки (гонобласты) появляются на третьей неделе эмбрионального развития в стенке желточного мешка в каудальном отделе эмбриона. Как и все клетки развивающегося организма, клетки зародышево го пути диплоидны. Они могут увеличиваться в числе путем митоза, повторяя все стадии обычного клеточного цикла, где происходит чере дование уровней количества ДНК и хромосом на клетку: 2 n (2 c) → S-период → 4 n (4 c) → 2 клетки 2 n (2 c) и т.д. Однако на определенных стадиях развития при половом созревании особей этот обычный ход смены событий меняется. Герминативные клетки превращаются в гониальные (оогонии — женские и сперматогонии — мужские клетки-предшественники), и они вступают и процесс мейоза. При этом как для женских, так и для мужских клеток наступает первый цикл мейоза. На этой и следующей стадии половые клетки получили название сперматоцитов и ооцитов (I и II порядка). В первом клеточном цикле мейоза происходит целый ряд событий, которые его значительно отличают от обычного клеточного цикла. После вступления в I цикл созревания и сперматоциты I и ооциты I порядков синтезируют ДНК, её количество удваивается, также как удваивается за счет репликации количество хромосом. Следовательно, после S-периода эти клетки нужно считать (так же как и соматические клетки после синтеза ДНК) тетраплоидными. После короткого G2-периода наступает профаза I мейотического деления, которая резко отличается от обычной мейотический профазы. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |