АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задача о ханойской башне

Читайте также:
  1. C) Любой код может быть вирусом для строго определенной среды (обратная задача вируса)
  2. БУДУЩЕЕ – ПЕРЕД ВАМИ СТОИТ НЕЛЕГКАЯ ЗАДАЧА. В ОДИНОЧКУ ВЫ С НЕЙ НЕ СПРАВИТЕСЬ.
  3. Вопрос 10. Задача
  4. Вопрос 18. Задача
  5. Вопрос 24. Задача
  6. Вопрос 26. Задача
  7. Вопрос 36. Задача
  8. Вопрос 38. Задача
  9. Вопрос 40. Задача
  10. Вопрос 42. Задача
  11. Вопрос 6. Задача
  12. Задача 1

Задача состоит в том, чтобы переместить всю башню из 8 дисков на один из других колышков, перенося каждый раз только один диск и не помещая больший на меньший.

Наилучший способ разрешить вопрос, подобный нашему,— несколько обобщить его. Посмотрим, что будет в случае n дисков. Одно из преимуществ такого рода обобщения состоит в том, что можно будет даже еще уменьшить размер задачи. Полезно вначале рассмотреть крайние случаи. Совершенно ясно, как перемещать башню, состоящую только из одного или двух дисков, а после нескольких попыток становится понятно, как перемещать башню из трех дисков. Следующий шаг в решении задачи —выбор подходящего обозначения: обозначай и властвуй. Будем говорить, что Тn есть минимальное число перекладываний, необходимых для перемещения n дисков с одного колышка на другой по правилам. Тогда T1, очевидно, равно 1, а Т2 равно 3. Можно получить дополнительную информацию, причем совершенно бесплатно, если рассмотреть самый крайний случай: ясно, что Т0 = 0, поскольку для перемещения башни из n=0 дисков вообще не требуется ни одного перекладывания! Как переместить высокую башню? Эксперименты с тремя дисками показывают, что решающая идея состоит в переносе двух верхних дисков на средний колышек; затем переносится третий диск и на него помещаются два других. Это дает ключ к общему правилу перемещения n дисков: сначала мы перемещаем n— 1 меньших дисков на любой из колышков (что требует Tn-1 перекладываний), затем перекладываем самый большой диск (одно перекладывание) и, наконец, помещаем n— 1 меньших дисков обратно на самый большой диск (еще Tn-1 перекладываний). Таким образом, n дисков (при n > 0) можно переместить самое большее за 2Tn-1 + 1 перекладываний: Tn <= 2Tn-1 + 1. Более короткого пути нет. На некотором этапе мы обязаны переместить самый большой диск. Когда мы это делаем, n — 1 меньших дисков должны находиться на одном колышке, а для того, чтобы собрать их вместе, потребуется по меньшей мере Tn-1 перекладываний. Самый большой диск можно перекладывать и более одного раза, если мы не очень расторопны. Но после перемещения самого большого диска в последний раз мы обязаны поместить n — 1 меньших дисков (которые опять должны находиться на одном колышке) обратно на наибольший диск, что также требует Tn-1 перекладываний. Следовательно¸ Tn >=2Tn-1 + 1. Это значит, что Tn =2Tn-1 + 1. (1.1) - совокупность подобных равенств называется рекуррентным соотношением. Найдём прямую формулу. T0 = 0, T1 = 1, T2 = 3, T3 = 7, T4 = 15, T5= 31, T6 = 63. Очень похоже на 2n-1. Для произвольного номера n это можно доказать с помощью метода математической индукции. В нашем случае база индукции тривиальна, поскольку Т0 = 20 —1 = 0, а индуктивный переход выполняется для n > 0, когда n заменяется на n — 1: Tn = 2Tn-1 + 1 = 2(2n-1-1)+ 1 = 2n-1. Следовательно, общая формула доказана для любого n =1,2,3….


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)