АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задача о разрезании пиццы

Читайте также:
  1. C) Любой код может быть вирусом для строго определенной среды (обратная задача вируса)
  2. БУДУЩЕЕ – ПЕРЕД ВАМИ СТОИТ НЕЛЕГКАЯ ЗАДАЧА. В ОДИНОЧКУ ВЫ С НЕЙ НЕ СПРАВИТЕСЬ.
  3. Вопрос 10. Задача
  4. Вопрос 18. Задача
  5. Вопрос 24. Задача
  6. Вопрос 26. Задача
  7. Вопрос 36. Задача
  8. Вопрос 38. Задача
  9. Вопрос 40. Задача
  10. Вопрос 42. Задача
  11. Вопрос 6. Задача
  12. Задача 1

Сколько кусков пиццы можно получить, делая n прямолинейных разрезов ножом? Или в другой формулировке: каково максимальное число Ln областей, на которые плоскость делится n прямыми?

Новая n-я прямая (при n > 0) увеличивает число областей на к тогда и только тогда, когда рассекает k старых областей, а рассекает она к старых областей тогда и только тогда, когда пересекает прежние прямые в k—1 различных местах. Две прямые могут пересекаться не более чем в одной точке. Поэтому новая прямая может пересекать n — 1 старых прямых не более чем в n— 1 различных точках, а значит k<=n и тогда Ln<= Ln-1+n. Более того, легко показать по индукции, что в этой формуле можно достичь равенства. Мы проводим n-ю прямую так, чтобы она не была параллельна никакой другой (следовательно, она пересекает каждую из них) и так, чтобы она не проходила ни через одну из имеющихся точек пересечения (следовательно, она пересекает каждую из прямых в различных местах). Поэтому рекуррентное соотношение имеет вид:

(1.2)

Теперь найдём прямую формулу. Угадать её здесь несколько сложнее (1,2,4,7, 11,16...), поэтому используем другой подход, основанный на развёртывании рекурентного соотношения:


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)