АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные направления криптологии

Читайте также:
  1. A) это основные или ведущие начала процесса формирования развития и функционирования права
  2. I. Основные характеристики и проблемы философской методологии.
  3. II. Основные задачи и функции Отдела по делам молодежи
  4. II. Основные принципы и правила поведения студентов ВСФ РАП.
  5. III. Основные требования к одежде и внешнему виду учащихся
  6. III. Основные требования по нормоконтролю
  7. WWW и Интернет. Основные сведения об интернете. Сервисы интернета.
  8. А) основные
  9. А) приобретение и передача технологий, включая основные проектные работы
  10. А. Основные компоненты
  11. А. Основные компоненты
  12. Атмосфера, ее состав, основные последствия антропогенного влияния на атмосферу.

В.Ф. Макаров

Методы защиты информации в компьютерных

Технологиях

Москва 2011

ОГЛАВЛЕНИЕ

1.Основные направления криптологии………………………………....…4

2.Элементы симметричных криптографических преобразований. История симметричных криптографических преобразований в приложениях.

3. Методы криптографических преобразований с открытым ключом….8

3.1. Алгоритм нахождения числа по модулю…………………………….11

3.2. Вычисление обратных величин в модулярной алгебре……..………12

3.3. Алгоритм операции возведения числа в степень по модулю……….13

3.4. Определение односторонней функции………………………………...15

4. Алгоритмы формирования и функционирования криптографических систем с открытым ключом…………………………………………………17

4.1. Алгоритм криптографической системы RSA…………………………17

4.2. Алгоритм криптографической системы на основе вычисления дискретных логарифмов в конечном поле – алгоритм Эль Гамаля………..23

4.3. Алгоритм функционирования криптографической системы на основе дискретного логарифмирования в метрике эллиптических кривых……28

4.3.1. Основные операции криптографических преобразований

в метрике эллиптических кривых…………………………………………..32

4.4. Преобразование Диффи-Хеллмана в системах криптографии с открытым ключом…………………………………………………………………..37

4.4.1. Алгоритм автоматического формирования

парных симметричных ключей шифрования-дешифрования

открытых сообщений на рабочих станциях абонентов

корпоративной системы……………………………………………………...39

4.5. Формирование криптограмм открытых сообщений и их дешифрование с использованием методов дискретного логарифмирования в метрике эллиптических кривых…………………………………………………………43

5. Алгоритмы электронной цифровой подписи…………………………..78

5.1. Алгоритм электронной цифровой подписи RSA (Райвест-Шамир-Адлеман)……………………………………………………………………...85

5.2. Алгоритм электронной цифровой подписи Эль Гамаля (EGSA). EGSA (EL Gamal Signature Algorithm)…………………………………………….92

5. 3. Алгоритм электронной цифровой подписи DSA (Digital Signature Algorithm)…………………………………………………………………………….99

5.4. Алгоритм электронной цифровой подписи ГОСТ Р34.10-94. (Отечественный стандарт электронной цифровой подписи)……………………….104

5.5. Алгоритм электронной цифровой подписи ГОСТ Р34.10-2001. (Отечественный стандарт электронной цифровой подписи)………………………110

 

 

Основные направления криптологии.

Со времени появления письменности стала развиваться такая от­расль научных знаний как полеография – историко - филологическая дис­циплина, изучающая памятники древней письменности с целью установления места и времени их создания. В основе знаний полеографии лежит также изучений сокращений письма и тайнописи, методов их расшифровки. Все это повлекло появление нового, направления научных знаний полеографии, что, в свою очередь, привело к формированию научно-прикладного направления – криптологии (крипто-kriptos(греч.)-тайный, скрытый; логика-logike(греч.)-раздел научных познаний о способах доказательств и опровержений). Однако, это понятие в прикладном аспекте теории передачи информации интерпретируется как наука о создании и анализе систем безопасной связи. Такое определение, далеко не в полной мере, характеризует фундаментально-прикладную семантику научного направления – криптологии, а является лишь небольшой видовой структурной составляющей. Более полно научное направление «криптология» целесообразно трактовать как науку о кодообразованиях семантических высказываний.

В свою очередь, научное направление «криптология» подразделяется на три функционально зависимых логико-математических и технических направления: криптография, криптоанализ, стеганография.

Криптография (греч. kriptos-тайный, скрытый; graho-пишу) – наука о методах защиты информации на основе ее преобразования с помощью различных шифров и сохранением достоверности семантического содержания.

Криптография представляет собой отрасль науки полеографии, изучающей графику систем тайнописи. Исходя из современных позиций теории передачи информации и теории кодирования, криптография определяется как отрасль научных знаний о методах обеспечения секретности и достоверности данных при передаче по каналам связи и их хранения в устройствах оперативной и долговременной памяти.

Криптоанализ (греч. kriptos-тайный, скрытый; analysis-разложение) наука о методах раскрытия и модификации данных. Это научное направление предметом своего изучения ставит две цели.

Первая цель – исследование закриптографированной информации с целью восстановления семантического содержания исходного содержания без знания ключа шифрования (концептуальное распознавание).

Вторая цель – на основе изучения и распознавания методов криптографирования производить фальсификацию исходных документов с целью передачи ложной инфоромации.

Стеганография (stega-клеймо; graho-пишу) – метод преобразования информации, скрывающий сам факт передачи какого-либо сообщения, метод, в основе которого лежит принцип разведзащищенности конфиденциальных сообщений. В этом случае исходное сообщение может быть представлено в виде речевого сигнала, музыкальной мелодии, сигнала видеоизображения, другого текстового документа.

Криптография как прикладная наука получила свое развитие еще с ХХ века до нашей эры. Так например, при раскопках древней цивилизации в Месопотамии найдены глиняные таблички, содержащие тайнопись о глазурировании гончарных изделий, т.е. первые шифртексты носили некоторый коммерческий характер. В дальнейшем стали шифроваться тексты медицинского характера, купли-продажи скота и недвижимости. Дальнейшее развитие подготовки и передачи зашифрованных текстов получили при ведении боевых действий. Относительная широкомасштабность военных мероприятий привела к необходимости разработки и внедрения средств «малой механизации» для шифрования секретных сообщений. Известен исторический факт, описанный древнегреческим писателем и историком Плутархом (автор «Сравнительных жизнеописаний», содержащих 50 биографий выдающихся греков и римлян), о реализации операции шифрования с помощью «средства малой механизации» - шифрующего устройства «скиталь». В качестве шифрующего устройства выбирался цилиндр заданного диаметра, на который наматывалась полоска бумажной ленты. На эту ленту записывался исходный текст, затем лента сматывалась с цилиндра и в промежутки между буквами (L=2ПR) исходного текста вписывались произвольно буквы естественного алфавита. Таким образом, несанкционированный пользователь не мог прочитать зашифрованное сообщение и распознать исходный текст без знания диаметра цилиндра. Ключом доступа к зашифрованной информации являлся диаметр цилиндра, который служил как шифрообразующим механизмом, так и устройством дешифрования. В этом случае дешифрующим устройством являлся цилиндр такого же диаметра, как и при шифровании. Бумажная лента с записанным на нее зашифрованным текстом наматывалась на этот цилиндр, и производилось расшифровывание зашифрованного текста.

Этот метод явился прообразом современных симметричных криптографических систем (одноключевых систем шифрования-дешифрования).

Этот метод и само устройство шифрования-дешифрования прослужили довольно долго, пока древнегреческий философ и ученый Аристотель не проявил себя в качестве криптоаналитика и не предложил в качестве криптоаналитического устройства распознавания диаметра цилиндра (скиталя – ключа шифрования-дешифрования) использовать конус, на который и наматывалась бумажная лента с зашифрованной записью. То место на цилиндре, где образовывалась читаемая часть слова или полное слово, определяло диаметр цилиндра (скиталя).

Активное проведение военных действий явилось мощным стимулирующим воздействием на разработку методов шифрования-дешифрования при передаче секретных сообщений. Так, в 56 году до нашей эры во время войны с галлами римский диктатор К. Цезарь при подчинении Риму заальпийской Галлии использовал в системе передачи секретных сообщений шифры замены. Такими методами шифрования-дешифрования явились «Шифр Цезаря со смещением», «Шифр Цезаря с ключевым словом», «Аффинная система подстановок» и т.д.

В конце XIX века появились механические шифровальные устройства, работающие по методу замены: шифровальное колесо Болтона; шифротор М-94, который находился на вооружении американской армии с 1924 года по 1943 год. Дальнейшей модификацией изделия М-94 явилась шифровальная машина М-209, которая была разработана шведским криптографом Б. Хагелином в 1934 году по заданию французских спецслужб. Эта шифровальная машина была выпущена серией более 140 тысяч штук и находилась на вооружении американской армии во время второй мировой войны. Достаточно мощное развитие механизм шифрования получил и в фашистской Германии при создании шифровальной машины Enigma.

Многовековая история развития науки криптографии показывает, что относительно до недавнего времени, она была направлена на построение криптографических систем военного назначения. Однако, в последние десятилетия это научное направление нашло широкое применение практически во всех сферах человеческой деятельности, выполняя функции как криптографической защиты электронных сообщений от несанкционированного восприятия и распознавания, так и аутентификации (подтверждение подлинности) принятых электронных сообщений с использованием инструментария электронной цифровой подписи.

В одной из своих работ «Прикладная криптография» американский ученый Брюс Шнайер одним предложением полно охарактеризовал значимость криптографии на современном этапе развития информационных технологий. Он отметил, что: «Шифрование слишком важно, чтобы оставить его только правительствам». Криптографический инструментарий является единственным и высоконадежным методом, обеспечивающим защиту информации в сетевых компьютерных технологиях различного уровня и назначения. Актуальность этого направления является однозначно безусловным неоспоримым фактором во всех сферах управления государственной и коммерческой деятельности: оборонной, правоохранительной, экономической, банковской, коммерческой, образовательной и т.д.

При криптографировании открытых электронных сообщений при передаче их по открытым общедоступным каналам, включая и каналы Internet технологий, различают три основных метода:

- симметричный (одноключевой) метод преобразования открытых сообщений;

- асимметричный (двухключевой) метод преобразование открытых сообщений (криптография с открытым ключом);

- комбинированный метод преобразования открытых сообщений.

Наиболее широкое распространение в открытых сетевых компьютерных технологиях на современном этапе разработок и эксплуатации криптографических систем защиты и аутентификации электронных документов и сообщений получили комбинированные криптографические системы, сочетающие в себе достоинства симметричных и асимметричных преобразований.

Метод асимметричного преобразования открытых сообщений реализован в криптографических системах с открытым ключом. Дальнейшим развитием метода асимметричного преобразования, получившим на современном этапе наибольшее распространение и определенный как наиболее перспективный, идентифицирован метод построения криптографических систем, построенный на теоретических положениях эллиптических кривых. Изначально теорию построения криптографических систем на основе асимметричных методов необходимо рассмотреть в базисе криптосистем с открытым ключом.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)