|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ЧАСТЬ ЧЕТВЕРТАЯ 3 страница. С течением времени пиетет перед нобелевскими премиями стал даже превращаться в идолопоклонство, которым научная средаС течением времени пиетет перед нобелевскими премиями стал даже превращаться в идолопоклонство, которым научная среда, как правило, грешит меньше, чем любая другая.
…Когда в 1943 году американцы подыскивали кандидатуру на роль главы атомного «проекта–V» и всплыло имя Роберта Оппенгеймера, его назначение долго затягивалось из–за того, что он не был лауреатом Нобелевской премии. «Последний недостаток сильно уменьшал его влияние в глазах коллег…» (генерал Лесли Гроувз). В начале века такого фетишизма не существовало. И еще невозможны были в те годы казусы иного рода: нарушения статута Нобелевского фонда, запрещавшего капитализировать премиальные суммы ради извлечения из них прибыли. В 1904 году Рэлей отдал почти всю свою премию (5000 фунтов стерлингов) на создание нового крыла Кавендишевской лаборатории. А четверть века спустя физик Иоганнес Штарк – сподвижник Ленарда и одни из тех, кто объявил теорию относительности Эйнштейна «мировым еврейским блефом», – купил на Нобелевскую премию фарфоровую фабрику. Изгнанный за это из Вюрцбургского университета, он искал сочувствия у рвущихся к власти нацистов как жертва происков неарийцев. В начале века такие штуки были еще немыслимы ни в Германии, ни в других странах.
Нежданному–негаданному богатству лауреаты радовались тогда откровенно и простодушно. Как написал Резерфорд в Пунгареху: «Это очень приятно и с точки зрения оказанной чести и в смысле звонкой монеты». Еще бы! Гонорары выдающихся физиков были в те времена несравненно скромнее нынешних. Оклад Резерфорда в Манчестере считался чрезвычайно высоким, а составлял не более 1600 фунтов в год. Присужденная ему премия превышала эту сумму в четыре с лишним раза! И 6800 фунтов были для него сказочной суммой денег. Это сразу почувствовала Эйлин, которой в канун рождества 1908 года Санта–Клаус из Стокгольма притащил неслыханные подарки. (На Уилмслоу–роуд. 17 царило «величайшее возбуждение», по словам Резерфорда.) Словом, все было радостно в этом лауреатстве. И только один пункт чрезвычайно его удивил: ему присудили премию по химии – не по физике! Правда, может показаться, что он должен был бы вдвойне торжествовать. Ив говорит, что именно в ту пору «он любил рассказывать не без веселого ликования, как ему удалось всерьез побить химиков на их собственном поле». Речь шла о тонких методах работы с крошечными объемами эманации: об освобождении ее от всяких примесей и получении ее развернутых спектров. И наконец – об экспериментальном разоблачении все тех же неоно–литиевых нелепостей Рамзая, на которых тот продолжал настаивать. Параллельно со счетом альфа–частиц Резерфорд упрямо занимался своими исследованиями радона в содружестве с молодым магистром наук Т. Ройдсом и стеклодувом–виртуозом Отто Баумбахом. Этим–то работам и были посвящены его статьи 1908 года для «Philosophical magazine». Тогда же он с удовольствием писал Хану, что сделался настоящим экспертом в области химии газов. И спектроскопии. А по поводу сходных, но совершенно не удовлетворявших его исследований Рамзая добавлял уже с полным пренебрежением: «Как говорят американцы, от его работ мне делается нудно…» Так разве не естественно было бы для него, Резерфорда, позлорадствовать: вот он побил «нормальных химиков» и на лауреатском поприще – теперь–то уж кончится их высокомерная оппозиция и скиснет их глупая гордыня! Но по намекам в его переписке можно безошибочно умозаключить, что превращение в химика все же его огорчило. Его удивило и огорчило, что химическому аспекту превращения элементов было отдано явное предпочтение перед громадностью физического содержания этого открытия. Пожалуй, нечто сходное мог испытать четырнадцатью годами позднее Эйнштейн, когда Нобелевский комитет удостоил его премией за работы по фотоэффекту, а не за создание частной и общей теории относительности. (Ряду членов комитета эти ценности казались в 1922 году еще недостаточно прочными!) Конечно, огорчение Резерфорда было мимолетным – тем более что случившееся позволяло скрасить доброкачественной шуткой пышность церемонии, ожидавшей его в Стокгольме. Шутку он придумал сразу, но сберег ее до 10 декабря, когда после четырехдневного путешествия по воде и по суше предстал, наконец, об руку с Мэри перед королем Швеции. Впрочем, в Музыкальной академии, где днем король вручал ему золотую медаль, речей от него еще не требовалось. Спич он произносил вечером – на банкете в королевском дворце. Лихорадочные заботы бедняжки Мэри о респектабельности его экстерьера – фрак! прическа! усы! – даром не пропали, хотя имели не совсем тот эффект, на какой она рассчитывала: был он так отутюжен и выхолен, что выглядел, по словам очевидца, «до смешного молодым». Особенно рядом с тремя другими лауреатами 1908 года: Илье Ильичу Мечникову и Габриэлю Липпману было за шестьдесят, а Паулю Эрлиху – за пятьдесят… Однако чувствовал он себя более чем уверенно и легко – словно в стенах университета Виктории или лондонского Барлингтон–хауза. И обычному своему стилю не изменил. В ответ на поздравительные тосты говорил он «с простотой, полной грации». И разве что была на этот раз в его юморе несколько излишняя профессорская обстоятельность: Мне приходилось иметь дело с весьма различными трансмутациями, обладавшими разной продолжительностью во времени, но быстрейшая из всех, какие я встречал, это моя собственная трансмутация из физика в химика – она произошла в одно мгновенье… Это мгновенное превращение ни к чему бы его не обязывало, когда бы не установившаяся традиция: каждый лауреат должен был выступить в Стокгольме с лекцией по своей научной дисциплине. И на следующий день, 11 декабря, Резерфорду предстояло в самом деле обернуться химиком – не на мгновенье, а на целый лекционный час. Еще в Манчестере он решил говорить, конечно же, об альфа–частице – о десятилетней истории ее открытия и изучения. Надо было только сделать химикоподобным название лекции. Это не составило труда: «Химическая природа альфачастиц радиоактивных субстанций». Вообще–то говоря, суть такого сообщения могла быть исчерпана коротким словом: «гелий». Но только слово коротко, а смысл долог. Как нельзя более кстати за месяц до отъезда в Стокгольм он сумел получить безусловное доказательство полной идентичности газа из альфа–частиц и обыкновенного гелия. Не косвенное, не расчетное, не логическое, а самое вещественное доказательство – как для суда. Со временем оно сделалось в физике притчей – притчей о гении и простоте. Это была одна из работ, проведенных Резерфордом совместно с магистром Ройдсом, к которому он питал особые чувства: подобно ему самому, молодой Ройдс был стипендиатом 1851 года. Но что крайне важно – два физика сотрудничали в этой работе со стеклодувом. То был случай, когда от фантастического мастерства весьма ограниченного ремесленника зависел весь исход задуманного эксперимента. Шеф и его ассистент, вероятно, и не подумали бы браться за дело, если бы Отто Баумбах (во многих отношениях малоприятный субъект) не объявил во всеуслышанье, что берется выдувать сосудики со стенками толщиной в одну сотую миллиметра! Конечно, в таком сосудике можно было надежно запереть любой газ – и воздух, и эманацию, и обычный гелий: молекулы, движущиеся с малыми тепловыми скоростями, пробиться даже через столь тонкую стенку не могли. Но для стремительно летящих альфа–частиц она должна была оказаться прозрачной. Почти как для света. Энергии альфа–частиц хватало на преодоление слоя воздуха толщиной в 5–7 сантиметров, а стеклянный листок в 0,01 миллиметра служил для них не более трудным барьером, чем двухсантиметровый воздушный слой. Получалось, что они могли пролететь без поглощения еще 3–5 сантиметров и за пределами сосудика Баумбаха. Наполнив такой сосудик эманацией, это несложно было проверить по вспышкам на сцинцилляционном экране. Но не прихвастнул ли немец–стеклодув, больше всего любивший в Англии манчестерское пиво? Однажды, поздней осенью 1908 года, Резерфорд сказал магистру Ройдсу, что если Баумбах действительно совершит обещанное чудо и даст им свою тонкостенную трубочку, они наполнят ее эманацией, поместят в другой – более широкий – сосуд, откачают из последнего воздух до возможного предела, терпеливо подождут, пока в этом внешнем сосуде накопится побольше альфа–частиц, и посмотрят по спектру, что такое альфа–газ? У него, у Резерфорда, нет ни малейших сомнений, что это гелий. Баумбах обещанное чудо совершил. Ройдс тоже не остался в долгу: экспериментальная установка была собрана так, что ниоткуда не мог пробраться в нее воздух, всегда содержащий гелиевую примесь, которая могла бы спутать все карты. Вообще опыт был подготовлен мастерски. Оставалось ждать и проводить регулярные наблюдения спектра. Когда кончились первые сутки, Ройдс меланхолически вошел в кабинет–лабораторию шефа и сказал: – Ничего не видно… Когда кончились вторые сутки, он вбежал и с порога крикнул: – Появилась желтая гелия! К концу четвертых суток Резерфорд сидел у спектроскопа сам. Уже отчетливо сияли хорошо ему знакомые и желтая и зеленая линии. А к концу шестого дня в окуляр был виден весь набор интенсивных линий гелиевого спектра. Теперь можно было отдавать старую проблему на суд самых строптивых присяжных – химическая природа альфа–частиц раскрылась совершенно однозначно! А баумбаховы трубочки с эманацией, по–видимому, именно с этого времени стали в Манчестерской лаборатории обыденнейшими источниками альфа–излучения: виртуоз–стеклодув изготовлял их легко и во множестве. Позднее, летом 1914 года, их очень поэтически описал в «Письме из Манчестера» выдающийся русский физико–химик Николай Шилов: «Это тончайшие стеклянные полые нити… Они светятся сами и заставляют экран из сернистого цинка блестеть, как перо жар–птицы, ярким голубым сиянием неописуемой красоты». Разумеется, в краткой нобелевской лекции Резерфорд обо всей той истории не рассказывал. Привел только блистательный ее итог. И о Баумбахе ни словом не обмолвился. Но в редакции «Philosophical magazine» уже лежала совместная статья Резерфорда и Ройдса, где роль «мистера Баумбаха» была тщательно и с благодарностью подчеркнута. (Так десять лет назад Резерфорд и Томсон подчеркивали заслуги Эбенизера Эверетта.) Через пятьдесят лет, однако, произошла забавная переоценка тех событий. Уже известная нам Мюриэль Хауортс в уже известной нам книге о Фредерике Содди, возражая против приписывания Резерфорду слишком многих важных открытий, объявила, что знаменитой окончательной идентификацией альфа–частиц и гелия наука обязана не нашему новозеландцу, а м–ру Баумбаху. Очевидно, она не знала, что тот был не физиком, а стеклодувом. Или решила, что это не столь уж существенно? …Дни в Стокгольме надолго запомнились Резерфорду. Он писал о них матери в Пунгареху, как о триумфальных днях своей жизни. И может быть, самым вдохновляющим было воспоминание о праздничном обеде 12 декабря у выдающегося шведского математика Магнуса Миттаг–Леффлера. В старомодно возвышенном тоне Миттаг–Леффлер сказал: Для меня это честь – приветствовать мистера Резерфорда, молодого пионера новой науки, которая не является ни физикой, ни химией, а в то же время представляет собою и физику и химию… Мистер Резерфорд умеет оперировать математическим аппаратом – языком науки; он знает, как планировать и проводить эксперименты; благодаря этой–то двойной способности он оказался в состоянии раскрыть так много сокровенных тайн природы… И мы вправе надеяться, что увидим его здесь во второй раз вновь в качестве лауреата Нобелевского фонда. Стареющий математик безошибочно почувствовал, что у молодого пионера новой науки фундаментальнейшие его открытия, быть может, еще впереди. Но Миттаг–Леффлер не знал, что эти открытия приведут со временем к созданию атомной механики, в математический аппарат которой войдут и его собственные, миттаг–леффлеровские, исследования так называемых аналитических функций. Таких вещей никто не знает заранее. Зато история уже задним числом накладывает отпечаток многозначительности на подобные встречи ученых, думающих, что они всего лишь современники, и не подозревающих, что на самом деле они и соратники. А двойное нобелевское лауреатство Миттаг–Леффлер напророчил Резерфорду зря. Эйнштейн тоже такой двойной чести не удостоился, хотя по масштабам содеянного был бы вправе по крайней мере четыре раза протягивать руку шведскому королю. Поразительно, но два эпохальных открытия в физике XX века – теория относительности и существование атомного ядра – Нобелевской премией отмечены не были.
На обратном пути из Стокгольма, в Голландии, еще одна знаменательная встреча ждала Резерфорда. Он провел вечер в Лейдене – в обществе великого Антона Гендрика Лоренца, завершителя классической электродинамики. В общем голландец тоже почти годился ему в отцы. И снова ни младший, ни старший не думали, что довольно скоро их свяжет нечто большее, чем относительная одновременность пребывания на земле и общность профессионального служения правде природы. И уж того меньше могли они догадываться, что связь эта окажется драматически окрашенной. Хотя оба, конечно, понимали, что принадлежат к разным поколениям физиков, ни тому, ни другому не могло прийти в голову, что скоро младшему откроется такая правда атома, которая старшему покажется непостижимой кривдой и заставит его произнести трагические слова: «Я потерял уверенность, что моя научная работа вела к объективной истине, и я не знаю, зачем жил…» А потом, уже в феврале 1909 года, было чествование нового лауреата дома – в университете Виктории. Из Кембриджа приехал Дж. Дж. Тонкими пальцами откидывал назад длинные волосы и легким движением кисти поправлял очки. И так же, как это бывало прежде, Резерфорд чувствовал себя рядом с ним не совсем отесанным парнем и в тяжеловесной силе своей ощущал какую–то грубоватость. Когда Дж. Дж. произносил речь на торжественном обеде в Уитуортс–холле, Резерфорд, сидевший рядом, даже достал из кармана очки – для самоутешения. Но на его носу они напоминали не об избыточно–книжном детстве, а о нормальном вступлении в ту пору жизни, за которой начинается старость. И завелись они в его кармане так недавно, что обращаться с ними непринужденно он еще не умел. Самоутешения не получилось. А потом он перестал об этом думать: Дж. Дж. с мягким энтузиазмом говорил о нем прекрасные вещи, и он. заслушался… Был он шестым из учеников Дж. Дж., уже успевших стать членами Королевского общества, и первым, получившим Нобелевскую премию. А старик – в этом году исполнялось четверть века его директорства в Кавендише – коллекционировал успехи учеников, как собственные. И чувствовалось, что само существование «профессора Резерфорда – ученика Томсона» доставляет старику удовольствие. И несказанно приятно было слышать: Из всех услуг, какие могут быть оказаны науке, величайшая – введение в ее обиход новых идей…И нет никого, кто подвергал бы свои идеи более суровому испытанию, чем профессор Резерфорд. Взволнованно отвечая Дж. Дж., профессор Резерфорд сказал, что «начиная с 1896 года в физике происходит революция». Но тут же уподобил прогресс в науке не победному шествию завоевателя, а «движению человека, идущего через топкие болота с редкими островками твердой земли». Это был странный образ в устах исследователя, делающего революцию! И уж совсем не банкетный. Однако – точный.
Он знал, что говорил. Он знал, что после окончания этого банкета, когда университетские деятели разойдутся по домам, а высокие гости разъедутся по отелям, ему обязательно захочется, прихватив с собою неизменно трезвого доктора Гейгера, хотя бы на десять минут заглянуть в лабораторию. Он знал, что в столь поздний час приземистый кирпичный корпус встретит его рядами темных окон, но что одно окно покажется ему темнее прочих, ибо должно быть зашторено с удвоенным тщанием: там бессонно продолжает наблюдения над альфа–сцинцилляциями самый юный из его мальчиков – покуда еще не доктор, не магистр, не бакалазр, а всего лишь способнейший парень, хэтфилдскнй стипендиат, двадцатилетний Эрни Марсден, по малости заслуг даже не удостоившийся приглашения на чествование шефа. Удивится ли Марсден его позднему вторжению? Разумеется, нет. А что ответит на обычное – «Ну как дела, мой мальчик?»? Неужели снова – только обычное, «хорошо», означающее, что установка работает исправно. А может быть, у него уже окажется в руках вполне определенный ответ: «Да, профессор, вы были правы!» Или: «Нет, профессор, желанный эффект не наблюдается…» Какой ответ вероятней? Вот этого–то он, Резерфорд, сведущий в альфа–частицах и их поведении больше, чем кто бы то ни было в любой лаборатории мира, этого–то он на сей раз даже приблизительно не знал. А от любого ответа юнца – особенно положительного – зависело очень многое. Возбужденный вином и речами, Резерфорд готов был отправиться к Марсдену, не дожидаясь конца банкета. Марсден появился в университете Виктории на месяц–два раньше Резерфорда. Ему было тогда восемнадцать. Научным сотрудником он еще не числился. Но смотрел на нового шефа широко раскрытыми глазами – восхищенно и преданно. И тоже переживал предчувствие «великих времен». Он помогал Гейгеру. Был ассистентом ассистента. Попросту лаборантом, но того толка, что умеют работать головой не хуже, чем руками. Однако Резерфорд незаметно привык относиться к нему, как к школьнику, и целый год, по–видимому, не слишком принимал его всерьез. И лишь незадолго до поездки в Стокгольм вдруг понял, что Марсден – взрослый человек со зрелым чувством ответственности. Он понял это, нечаянно оскорбив его несправедливостью – одной из тех, какими в приступах гнева оскорблял он многих. Случилось это как раз в те дни, когда он и Ройдс нервно ожидали появления гелиевых линий в спектре альфа–газа. Вся лаборатория с интересом ждала тогда исхода начавшегося эксперимента. Осаждать вопросами шефа решались немногие, а замученный вопросами Ройдс стал огрызаться. Проще было зайти по мнимому делу в его комнату и как бы между прочим прильнуть к окуляру спектроскопа, чтобы самому увидеть – засветились, наконец, линии гелия или нет. Кто–то из любопытствующих второпях сдвинул призму спектроскопа. Марсден, работавший по соседству у оптического столика, ничего не заметил. Но вдруг он услышал рычание Резерфорда и проклятья и тотчас почувствовал на своей шее, сзади, крепкую руку шефа: «Вы двигали эту призму?!» Марсден тихо выдавил: «Нет». Он так произнес это честное «нет», что шеф, не оглядываясь, молча, покинул комнату. А спустя полчаса вошел снова – уселся рядом и без предисловий попросил простить его. Марсден полагал, что за эти полчаса шеф, «должно быть, нашел истинного преступника». Но больше похоже на правду другое: это время понадобилось шефу, чтобы осудить, остудить и устыдить себя самого. В 1949 году, в 4–й мемориальной лекции о Резерфорде, профессор Веллингтонского колледжа Новозеландского университета шестидесятилетний сэр Эрнст Марсден сказал. «Вы оцените его поступок, если я добавлю, что мне было в то время всего девятнадцать лет».
…Он мог бы прихвастнуть, что ему уже все двадцать, когда после возвращения из Стокгольма Резерфорд решил довериться его созревшей самостоятельности. Шел 1909 год. Ганс Гейгер работал над проблемой № 7 – «Рассеяние альфа–частиц». Марсден, как повелось, ассистировал. Очередь до этого многообещающего пункта в резерфордов. ской программе исследований дошла естественно. Только теперь, когда с таким успехом была решена проблема № 21 и появились целых два метода регистрации альфа–частиц, можно было по–настоящему заняться изучением их поведения в веществе. Почему узкий пучок альфа–частиц, пронизав слой вещества, перестает быть таким же узким, как прежде? Помните, Резерфорду хотелось это узнать еще в Монреале, когда летом 1906 года он впервые заметил совсем пустяковый эффект рассеяния – расширение альфа–луча примерно на 2 градуса после выхода из тончайшей слюдяной пластинки. Он пришел тогда к важному выводу: атомы вещества – средоточия сильных электрических полей. Иначе не понять, как атомам удается отклонять тяжелую и стремительную альфа–частицу от прямолинейного полета, когда она летит мимо них. Мимо? Да, так это выглядело. И вправду – что же иное можно сказать о частицах, сумевших насквозь пронизать вещество пластинки? Раз уж «насквозь», значит наверняка «мимо» атомов. Так что же такое атомы? Как их надо себе представлять? Короче: как же устроены эти электрические микросистемы? Проблема была не нова. Над нею задумывался еще Фарадей. Над нею размышляли многие исследователи. Физики и философы. Умы великие и умы посредственные. Но старые вопросы приобрели теперь совершенно новое звучание. Впервые вся эта громадная проблема превращалась из умозрительной в экспериментальную. Альфа–частицы и в самом деле обернулись тонким инструментом для прощупывания незримых атомных миров.
Началось с продолжения монреальских опытов 1906 года. Все началось последовательно и логично. Логично было посмотреть, как рассеиваются альфа–частицы не слюдой, чей химический состав довольно сложен, а простыми веществами – скоплениями одинаковых атомов. Логично было поискать зависимость между картиной рассеяния и атомным весом рассеивателя. Логично было выявить связь между толщиной рассеивающего слоя и углами отклонения частиц. Словом, логично было обследовать эффект всесторонне, прежде чем делать решающие выводы. И неизвестно, сколько «изнуряюще нудного труда» выпало бы на долю Гейгера и Марсдена и сколько времени блуждал бы Резерфорд по трясине мелких наблюдений, пока дошел бы черед до твердой земли, да и вообще неизвестно, добрался ли бы он в Манчестере до твердой земли, если бы… Снова это услужливое «если бы»! Право, можно подумать, что у случая нет других забот, кроме как помогать ищущим поскорее добираться до цели: биографии ученых полны чудесно–ускоряющими «если бы». Но не оттого ли это так, что историю науки пишут не те, кто ее делал? Делавших уже не расспросить о подробностях. А в них–то и прячется необходимость – подспудная, неразговорчивая, отлично умеющая обернуться случайностью большого события. Мы же с детской готовностью поддаемся обману: необходимость буднична, как паутина, а случай праздничен, как выигрыш в лотерее. Но даже, когда случай и вправду случай, напрасно думать, будто избранник небрежно запускает руку в барабан и без промаха вытаскивает билетик с номером. Этому предшествует перебор пустышек. Долгий ли, короткий ли перебор, но такой, что в пору мозоли набить на пальцах! И пустышки сполна оплачены – работой, нервами, временем – всем, что называется жизнью. Гейгер и Марсден поначалу работали на старой, распластанной в длину экспериментальной установке, так хорошо служившей счету альфа–частиц. 4? – метровая стеклянная трубка с препаратом радия в дальнем конце по–прежнему играла роль альфа–провода: из сферического облака разлетавшихся во все стороны альфа–частиц она вырезала узкий луч и направляла его на мишень. А за мишенью пронизавшие ее частицы встречали сцинцилляционный экран. Но теперь уже надо было не только считать звездочки вспышек: важна была картина возникавших па экране созвездий – распределение альфа–частиц по разным углам отклонения от оси луча. Сменялись мишени – листки металлической фольги. Проходили испытание атомы восьми чистых металлов – от легкого алюминия (атомный вес 27) до тяжелого свинца (атомный вес 207). Сменялись мишени однослойные, двухслойные, многослойные. Как и в монреальских опытах Резерфорда, наиболее вероятный угол рассеяния всякий раз бывал невелик: 1–2 градуса. Но, хоть и в нешироких преде пах, он, конечно, менялся от мишени к мишени. И к февралю Гейгер уже вывел заключение, что этот угол – мера рассеяния – тем больше, чем тяжелее рассеивающие атомы. Рассеяние возрастало и с увеличением числа атомов, мимо которых пролетала частица. Иначе говоря, оно было тем больше, чем многослойней была мишень. В общем, по мнению Гейгера, уже можно было утверждать: наиболее вероятный угол отклонения частиц варьирует, как квадратный корень из атомного веса вещества и как квадратный корень из толщины рассеивателя. Разумеется, эта информация была интересна и важна, как интересны и важны данные любых достоверных научных опытов. Кстати, тогда же, в других лабораториях другие физики изучали рассеяние в веществе легких бета–частиц – электронов. В Дублине этим занимался давний кавендишевский приятель Резерфорда Мак–Клелланд. В Германии – эрлангенский Шмидт. Оба обнаружили закономерности, сходные с гейгеровскими, только менее рельефные. Тяжелые альфа–частицы, несущие двойной заряд, оказались гораздо чувствительней к различиям в атомном весе рассеивателей: при переходе от алюминия к золоту эффект для электронов увеличивался в два раза, а для альфа–частиц – в двадцать раз! Да, конечно, все это были полезные сведения. Но что давали они для конструктивных размышлений об устройстве атомных миров? Экспериментально подтверждалось нечто заведомо очевидное: чем тяжелее атомы, тем сильнее их электрические поля. (Ибо слеплены такие атомы природой из большего количества электрически заряженной материи.) Это был почти трюизм. Иначе говоря, история открытия атомного ядра началась довольно уныло. Но вот однажды – по–видимому, в начале февраля 1909 года – в эту историю вмешалось только что упоминавшееся счастливое «если бы»… Оно явилось в досадном обличье. Уже давно, в первых же опытах по рассеянию, Гейгер и его юный помощник столкнулись с непредвиденной трудностью: им часто не удавалось получить на сцинцилляционном экране за мишенью картину рассеяния устойчивых очертаний. Так можно понять Марсдена, вспоминавшего, что у них не получалась constant fugure – «постоянная картина»: сцинцилляции нет–нет да и вспыхивали где–то в стороне от оси луча, показывая, что есть частицы, вылетающие из мишени куда–то вбок. Но это значило, что они и падали на мишень не под прямым углом, как весь луч, а откуда–то сбоку. Хотя их было немного, они все же путали статистику. Они загрязняли опыт и вызывали досаду. Гейгер и Марсден предположили, что всему виною невидимые глазу неровности – «молекулярные опухоли» – на стеклянных стенках 4? – метрового альфа–провода: частицы, летящие от источника вдоль стенок, пронизывают эти неровности или касаются их, в обоих случаях претерпевая рассеяние. К мишени они подлетают уже не под прямым углом. Гейгера, а вместе с ним и Марсдена, беспокоило одно: как избавиться от этих непрошеных частиц? Надо отдать им должное – они устранили беду с изобретательностью, достойной самого шефа. Они вставили в трубку серию шайбочек–колец, плотно прилегающих изнутри к стеклянным стенкам. Так они вывели из игры все периферийные частицы альфа–луча. Шайбочки их задерживали и поглощали. Луч сузился. Зато летел теперь по каналу, лишенному стенок: он летел внутри стеклянного альфа–провода по воображаемой трубке, ограниченной шириною отверстия шайбочек. (Этим экспериментальным приемом физики–атомники пользуются в случае нужды и сегодня.) Резерфорд появлялся в лаборатории ровно в девять утра и начинал свой рабочий день с обхода сотрудников. Как и в Монреале, сильные акустические волны издалека возвещали о его приближении. Но двухэтажное здание, вытянутое в длину, было скромнее, и звуки не разносились так гулко, как в Физикс–билдинге. …Good morning, Кэй! Вчера у сэра Горация Лэмба все восторгались вашими демонстрационными опытами на моих лекциях. Вы молодец, старина. Я им сказал, что вы – лучший лабораторный ассистент в Британской империи. Второй Эверетт! Good morning, Мак! Говорят, студенты практикума жалуются на вашу суровость. Держите их еще крепче, мой мальчик! … – Послушайте–ка, Антонов, все хочу спросить вас, как по–русски good morning? – Доброе утро, профессор! – Так доброе утро, my boy! Вам повезло – приехал Болтвуд из Иеля. Поговорите с ним о радии–D. Он знает о нем все… … – Good morning, мисс Уайт! Что вас затрудняет?.. Расчет чувствительности?.. Дайте–ка исходные данные… И помолчите минуточку, Марджерет! Прикинем в уме… (Широко расставленные ноги. Закинутая голова. Мгновенные выкладки вслух.)…Вот так. Проверьте с Маковером. И наконец: … – Guten Tag, Ганс! Good morning, Эрни! Гейгер и Марсден видели его каждый день. Он знал все их огорчения и победы. Знал о молекулярных опухолях. Благословил шайбочки. Конечно, он думал и о том, что в принципе можно было бы обойтись и без шайбочек: можно было бы ввести в статистические подсчеты вычисленную поправку на рассеяние альфа–частиц в трубке. Ведь она, эта трубка, не меняется от опыта к опыту, распределение неровностей на ее стенках остается неизменным, и фальшивить она должна по некоей своей вероятностной закономерности. Но установить это математически – значило провести специальное педантичное исследование. Он не был противником педантизма, однако при условии, что не возникала угроза раздражающих проволочек. А может быть, кроме всего прочего, его смущала математическая сторона дела? Так или иначе, он согласился с Гейгером, что избавиться от ненужных частиц экспериментальным путем проще, чем с помощью теории вероятностей. Но не с этой ли историей был связан один поступок Резерфорда, вызвавший как раз в ту пору иронические и восхищенные толки в университете Виктории. Нобелевский лауреат вскоре после возвращения из Стокгольма пожелал сызнова побывать в шкуре студента. Когда кончились рождественские каникулы, он пришел к известному манчестерскому математику Горацию Лэмбу и попросил разрешения слушать у него курс теории вероятностей. Намерения нового студента были вполне серьезны: он собирался пройти и всю программу практических занятий у Лэмба. То было нетривиальное зрелище: мировая знаменитость, восседающая среди юнцов и склонившаяся над тетрадкой с заданными упражнениями! Мировая знаменитость дала себе единственную поблажку: не экзаменоваться. Но не от гордыни – от застарелого отвращения к этой процедуре. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.) |