АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференцирование неявной функции

Читайте также:
  1. A. для временного замещения выделительной функции почек
  2. II. Основные задачи и функции Отдела по делам молодежи
  3. II.2 Принципы деятельности и функции КБ
  4. III. 2. Функции собственного капитала банка.
  5. III. ФУНКЦИИ ДЕЙСТВУЮЩИХ ЛИЦ
  6. III. Функции общешкольного родительского комитета
  7. III. Функции семьи
  8. III. ФУНКЦИИ СЛУЖБЫ ОХРАНЫ ТРУДА
  9. III.7.1.Функции и компетенции органов прокуратуры
  10. IV. Порядок и формы контроля за исполнением государственной функции
  11. Wait функции
  12. А) Ведущая и подчиненная функции

Функция z = ƒ (х; у) называется неявной, если она задается уравнением

неразрешенным относительно z. Найдем частные производные неявной функции z, заданной уравнением (44.11). Для этого, подставив в уравнение вместо z функцию ƒ (х; у), получим тождество F(x;у;ƒ (х; у)) = 0. Частные производные по х и по у функции, тождественно равной нулю, также равны нулю:

откуда

Замечания.

а) Уравнение вида (44.11) не всегда определяет одну переменную как неявную функцию двух других. Так, уравнение х22+z2-4=0 определяет функции определенные в круге х22≤4, определенную в полукруге х2+у2 ≤ 4 при у≥ 0 и т. д., а уравнение cos(x + 2у +3z)- 4 = 0 не определяет никакой функции.

Имеет место теорема существования неявной функции двух переменных: если функция F(x; у; z) и ее производные F'x(x; у; z), F'y(x; у; z), F'z(x;y;z) определены и непрерывны в некоторой окрестности точки M0(x0;y0;z0), причем F(x0;y0;z0)=0, а F'z(x0;y0;z0)≠0, то существует окрестность точки М0, в которой уравнение (44.11) определяет единственную функцию z=ƒ(х;у), непрерывную и дифференцируемую в окрестности точки (х00) и такую, что ƒ(х00)=z0.

б) Неявная функция у=ƒ(х) одной переменной задается уравнением F(x;у)=0. Можно показать, что в случае, если удовлетворены условия существования неявной функции одной переменной (имеется теорема, аналогичная вышеуказанной), то производная неявной функции находится по формуле

Пример. Найти частные производные функции z, заданной уравнением ez+z-х2у+1=0.

Решение: Здесь F(x;y;z)=ez+z-х2у+1, F'x=-2ху, F'y = -х2, F'z=ez+1. По формулам (44.12) имеем:

Пример. Найти если неявная функция у=ƒ(х) задана уравнением у3+2у=2х.

Решение: Здесь F(x;у) = у3+2у-2х, F'x=-2, F'y = 3у2+2. Следовательно,

Тема 15. Экстремумы функций нескольких переменных (4 часа)

Литература:

1. Баврин И.И. Высшая математика: Учебник для вузов. – М.: «Академия», 2008.

2. Пискунов Н.С. Дифференциальное и интегральное исчисление: Учебное пособие для втузов. Т. 1. – М.: «Интеграл Пресс», 2009.

3. Шипачёв В.С. Высшая математика: Учебник для вузов. – М.: Высшая школа, 2010.

4. Кудрявцев А.В. Краткий курс математического анализа. Т.2 Дифференциальное и интегральное исчисление функции многих переменной. Гармонический анализ.: Учебник – 3-е изд., перераб. – М.: ФИЗМАТЛИТ, 2002. – 424 с.

5. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: в 3-х томах. – М.: ФИЗМАТЛИТ: Лаборатория знаний, 2003.

6. Шипачев В.С. Задачник по высшей математике: Учебное пособие для вузов/ В.С. Шипачев. – 3-е изд., стер. – М.: Высшая школа, 2003. – 304 с.

Вопрос для самостоятельного изучения

Условный экстремум. Метод множителей Лагранжа

 

Усл о вный экстр е мум, относительный экстремум, экстремум функции f (x1,..., xn + m) от п + т переменных в предположении, что эти переменные подчинены ещё т уравнениям связи (условиям):

j k (x1,..., xn + m) = 0, 1£ k £ m (*)

Точнее, функция f имеет у сл о вный экстр е мум в точке М, координаты которой удовлетворяют уравнениям (*), если её значение в точке М является наибольшим или наименьшим по сравнению со значениями f в точках некоторой окрестности точки М, координаты которых удовлетворяют уравнениям (*). Геометрически в простейшем случае у сл о вный экстр е мум функции f (x,у) при условии j(х, у) = 0 является наивысшей или наинизшей (по сравнению с близлежащими точками) точкой линии, лежащей на поверхности z = f (x, у) и проектирующейся на плоскость хОу в кривую j(х, у) = 0. В точке У. э. линия j(х, у)= 0 либо имеет особую точку, либо касается соответствующей линии уровня функции f (x, у). При некоторых дополнительных условиях на уравнения связи (*) разыскание у сл о вного экстр е мума функции f можно свести к разысканию обычного экстремума функции, выразив x1 + 1.., xn + m из уравнения (*) через x1,..., xn и подставив эти выражения в функцию f Др. метод решения – Лагранжа метод множителей.

Лагр а нжа м е тод мн о жителей, метод решения задач на условный экстремум; Лагр а нжа м е тод мн о жителей заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции — т. н. функции Лагранжа.

Для задачи об экстремуме функции f (х1, x2,..., xn) при условиях (уравнениях связи) j i (x1, x2,..., xn) = 0, i = 1, 2,..., m, функция Лагранжа имеет вид

.

Множители y1, y2,..., ym называют множителями Лагранжа.

Если величины x1, x2,..., xn, y1, y2,..., ym суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений

, i = 1, …, n; , i = 1, …, m,

то при достаточно общих предположениях x1, x2,..., xn доставляют экстремум функции f. Функция Лагранжа L применяется также при исследовании задач вариационного исчисления и математического программирования. Впервые Лагр а нжа м е тод мн о жителей был предложен в 1797 Ж. Лагранжем в связи с задачами дифференциального исчисления.

Задачи на условный экстремум возникают во многих вопросах геометрии (например, разыскание прямоугольника наименьшего периметра, имеющего заданную площадь), механики, экономики и т.д.

Многие задачи вариационного исчисления приводят к разысканию экстремумов функционалов при условии, что др. функционалы имеют заданное значение или же к задаче о разыскании экстремума функционала в классе функций, удовлетворяющих некоторым уравнениям связи, и т.д. Решение таких задач также проводится методом множителей Лагранжа.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)