|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Кодування без втрат з передбаченнямПовернемося тепер до питання стиснення без втрат, не вимагає розкла вання зображення на окремі бітові площини. Загальний підхід, званий кодуванням без втрат з пророкуванням, заснований на знешкодженні міжелементних надмірностей близько розташованих пікселів шляхом виділення і кодування тільки нової інформації, отриманої в кожному пікселі. Нова інформація, що міститься в пікселі, визначається як різниця між істинним і передвіщеним значеннями пікселя. На Рис. 1.19 представлені основні елементи системи кодування без втрат з прогнозом. Система складається з кодера і декодера, причому кожен містить однакові передбачення. Коли черговий елемент вхідного зображення, позначениий
Рис. 1.19. Модель кодування без втрат з пророкуванням: (а) кодер; (б) декодер.
Декодер на Рис. 1.19 (6) відновлює значення
Для формування пророкує значення
де m - порядок лінійного передбачення,
де кожна залежна змінна тепер виражає виключно як функція просторових координат
Приклад 1.15. Кодування з передбаченням. Розглянемо кодування напівтонового зображення на Рис. 1.14 (а) за допомогою простого лінійного провісника першого порядку:
a)
б) в) Рис.1.20 (а) Зображення помилки передбачення, отриманої з (1.4-9). (б) Гистограма рівнів яскравості початкового зображення. (в) Гистограма помилок передбачення.
Провісник такого загального вигляду називається провісником по попередньому елементі, і відповідна процедура кодування називається диференціальним кодуванням, або кодуванням по попередньому елементу. На Рис. 1.20 (а) показано у вигляді зображення значення (сигнал) помилки пророкування, що отримується з (1.4-9) при На Рис. 1.20 (6) і (в) представлені гістограма рівнів яркостей вихідного зображення (приведеного на Рис. 1.14 (а)), а також гістограмма помилок передбачення, отриманих за формулою (1.4-9). Зауважимо, що дисперсія помилок передбачення на Рис. 1.20 (в) багато менше дисперсії рівнів яркостей вихідного зображення. Більш того, оцінка першого порядку ентропії сигналу помилки передбачення також значно менше, ніж відповідна оцінка ентропії перехідного зображення (3,96 біт/піксель проти 6,81 біт/піксель). Це зменшення ентропії відображає скорочення значної степені надмірності за допомогою процесу кодування, незважаючи на те, що згідно (1.4-5) для точного уявлення послідовності помилок передбачення m- бітового зображення потрібні (m + 1) - бітові числа. Хоча для кодування даної послідовності помилок передбачення може бути використана будь-яка з розглянутих в Розділі 1.4.1 процедур нерівномірного кодування, результуючий коефіцієнт стиснення буде обмежений величиною приблизно 8/3,96, або близько 2:1. Взагалі, оцінка максимально стиснення будь-якого варіанту кодування без втрат з передбаченням може бути отримана діленням середнього числа бітів, використовуємих для представлення значення одного пікселя, на оцінку першого порядку ентропії сигналу помилки передбачення. Попередній приклад показує, що величина стиснення, отримується при кодуванні без втрат з пророкуванням, прямо пов'язана зі зменшенням ентропії, що відбувається завдяки відображенню вхід ного зображення в послідовність помилок передбачення. Оскільки в процесі передбачення і обчислення різниці видаляється значна частка міжелементних надмірності, розподіл ймовірностей помилок передбачення має різкий пік в нулі і характеризується відносно малою дисперсією (у порівнянні з розподіленням яскравостей вхідного зображення). Щільність розподілення ймовірностей помилки провісника часто моделюють розподіленням Лапласа з нульовим середнім:
де
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (2.928 сек.) |