|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вибір перетворенняСистеми трансформаційного кодування, засновані на різних дискретних двовимірних перетвореннях, досить добре досліджені і вивчені. Вибір найкращого перетворення для конкретного додатка залежить від величини допустимої помилки відновлення і від наявних обчислювальних ресурсів. Стиснення ж виникає не під час перетворення, а на етапі квантування отриманих коефіцієнтів. Розглянемо зображення для для Ядро прямого перетворення в (1.5-24) називається розділеним, якщо У разі, коли Аналогічні коментарі можуть бути зроблені по відношенню до отруту ру зворотного перетворення; для цього досить замінити Ядра прямого і зворотного перетворень в (1.5-24) і (1.5-25) визначають саме перетворення, загальну обчислювальну складність, а також помилки відновлення системи трансформаційного кодування, в якій це перетворення використовується. Найбільш відомої парою ядер перетворення є і де Обчислювально більш просте перетворення, також широко використовується в трансформаційному кодуванні і називається перетворенням Уолша-Адамара (ПУА), виходить за допомогою функціонально ідентичних ядер: де де підсумовування, як зазначалося раніше, виробляються за модулем 2. Для обчислення На відміну від ядер ДПФ, які є сумами синусів і косинусів (див. (1.5-28) і (1.5-29)), ядра перетворення Уолша-Адамара складаються з +1 і - 1, що чергуються розташованих у шаховому порядку. На Рис. 1.29 показано ядро для N = 4. Кожен блок складається з 4x4 = 16 елементів; білий колір означає +1, а чорний означає -1. Щоб сформувати лівий верхній блок необхідно покласти Рис. 1.29. Базисні функції Уолша-Адамара для N = 4. Початок координат кожного блоку знаходиться в його лівому верхньому куті. Одним з найбільш часто використовуваних перетворень для стиску зображень є дискретне косинусне перетворення (ДКП). Воно виходить шляхом підстановки в (1.5-24) і (1.5-25) наступних (однакових) ядер: де і аналогічно для Рис. 1.30. Базисні функції дискретного косинусного перетворення для N = 4. Початок координат кожного блоку знаходиться в його лівому верхньому куті.
Приклад 1.19. Трансформаційне кодування з використанням ДПФ, ПУА і ДКП, і усіканням коефіцієнтів. На Рис. 1.31 (а), (в) і (д) показані три наближення напівтонового зображення розмірами 512x512 елементів (Рис. 1.23). Ці результати були отримані розбиттям вихідного зображення на блоки розмірами 8x8 елементів, представленням кожного блоку за допомогою одного з розглянутих перетворень (ДПФ, ПУА або ДКП), обнуленням (усіканням) 50% найменших за значеннями коефіцієнтів, і виконанням зворотних перетворень над отриманими масивами. У всіх випадках 32 залишаються коефіцієнта вибиралися як найбільші за значенням. Якщо відволіктися від використання квантування і кодування, то цей процес призводить до двократнього стиску вихідного зображення. У всякому разі зауважимо, що 32 видалених коефіцієнта мали дуже малий вплив на якість відновленого зображення. Їх усунення, тим не менш, призвело до виникнення деяких відхилень, які у вигляді зображень представлені на Рис. 1.31 (6), (г) і (е). Значення стандартних відхилень помилок склали, відповідно, 1,28, 0,86, і 0,68 рівнів яскравості. Невеликі відмінності в стандартних відхиленнях помилок, приведених в попередньому прикладі, прямо пов'язані з енергією, або характеристиками ущільнення інформації застосованих перетворень. Відповідно до (1.5-25), зображення для а) б) в) г) д) е) Рис. 1.31. Наближення зображення на Рис. 1.23 за допомогою перетворення з усіканням коефіцієнтів: (а) Фур'є, (в) Уолша-Адамара, (д) косинусного, а також зображення відповідних посилених помилок.
Ця інтерпретація стане ясніше, якщо записати (1.5-34) у вигляділі де Тоді Задамо маскуючу функцію для коефіцієнтів перетворення: для де де Попередній приклад показав, що ДКП володіє кращою властивістю до упаковки інформації, в порівнянні з ДПФ і ПУА. Хоча ця ситуація справедлива для більшості реальних зображень, тим не менш, оптимальним в сенсі упаковки інформації є перетворення Карунена-Лоева, а не ДКП. Тобто ПКЛ мінімізує середній квадрат помилки в (1.5-39) для будь-якого вхідного зображення і будь-якого числа збережених коефіцієнтів. Однак, оскільки ПКЛ залежить від перетворюваних даних, то отримання базисних зображень для кожного блоку зображення є нетривіальною для обчислень завданням. З цієї причини ПКЛ для стиснення зображень використовується рідко. Замість цього зазвичай застосовуються такі перетворення, як ДПФ, ПУА або ДКП, базисні зображення яких фіксовані (тобто не залежать від вхідних даних). З перетворень, що не залежать від вхідних даних, найпростішими в реалізації є не синусоїдальні, а такі, наприклад, як ПУА. З іншого боку, перетворення, засновані на гармонійних функціях (ДПФ, ДКП або аналогічні), краще наближаються до оптимальної упаковки інформації, що досягається ПКЛ. Завдяки цьому багато системи трансформаційного кодування грунтуються на ДКП, яке дає хороший компроміс між ступенем упаковки інформації та обчислювальною складністю. Доказом того, що характеристики ДКП мають велике практичне значення, є той факт, що ДКП увійшло в міжнародний стандарт систем трансформаційного кодування (див. Розділ 1.6). У порівнянні з іншими подібними перетвореннями, ДКП забезпечує упаковку найбільшої кількості інформації в найменше число коефіцієнтів (для більшості реальних зображень), а також мінімізує ефект появи блокової структури, що називається блоковими спотвореннями, що виявляється в тім, що на зображенні стає видно границю між сусідніми блоками. Остання особливість вигідно виділяє ДКП серед інших синусоїдальних перетворень. Оскільки ДПФ характеризується n -точковою періодічностью, то розриви на межах блоків, представлені на Рис. 1.32 (а), призводять до появи помітної високочастотної складової. При усіканні або квантуванні коефіцієнтів ДПФ, прикордонні елементи блоків через явища Гіббса приймають невірні значення, що призводить до виникнення блокових спотворень. Таким чином, межі між сусідніми блоками стають помітними через те, що прикордонні елементи блоків приймають спотворені значення. ДКП представлене на Рис. 1.32 (6), зменшує цей ефект, тому що його періодичність у 2 n точок не призводить до розривам на кордонах блоку. Перевагою ДКП є також і те, що воно реалізоване в інтегральних мікросхемах. а) б) Рис. 1.32. Періодичність, притаманна одномірним (а) ДПФ і (б) ДКП.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |