|
||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Формула — 1 Магнитный момент витка
S площадь витка с током n нормаль к плоскости в которой находится виток
Рисунок — 3 проволочный виток
Рисунок — 4 виток в однородном магнитном поле
При подаче тока на виток его плоскость повернется перпендикулярно силовым линиям постоянного магнита, а ось станет им параллельна. Причем направление поворота витка будет определяться правилом буравчика. А строго говоря, направлением, в котором течет ток по витку.
В предыдущей главе предполагалось, что провода, по которым текут токи, создающие магнитное поле, находятся в вакууме. Если несущие ток провода находятся в какой-либо среде, магнитное поле изменяется. Это объясняется тем, что всякое вещество является магнетиком, т. е. способно под действием магнитного поля приобретатьмагнитный момент (намагничиваться). Намагниченное вещество создает магнитное поле В, которое накладывается на обусловленное токами поле Во. Оба поля в сумме дают результирующее поле Истинное (микроскопическое) поле в магнетике сильно изменяется в пределах межмолекулярных расстояний. Под В подразумевается усредненное (макроскопическое) поле (см. § 17). Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые токи (молекулярные токи). Каждый такой ток обладает магнитным моментом и создает в окружающем пространствемагнитное поле. В отсутствие внешнего поля молекулярные токи ориентированы беспорядочным образом, вследствие чего обусловленное ими результирующее поле равно нулю. В силу хаотической ориентации магнитных моментов отдельных молекул суммарный магнитный момент тела также равен нулю. Под действием поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается — его суммарный магнитный момент становится отличным от нуля.Магнитные поля отдельных молекулярных токов в этом случае уже не компенсируют друг друга и возникает поле Намагничение магнетика естественно характеризовать магнитным моментом единицы объема. Эту величину называют намагниченностью и обозначают буквой J. Если магнетик намагничен неоднородно, намагниченность в данной точке определяется следующим выражением: где Поле В, так же как и поле Таким образом, формула (49.2), а следовательно, и формула (49.1) справедливы не только для поля в вакууме, но и для поля в веществе. Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторнаяфизическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. В Международной системе единиц (СИ): В системе СГС: В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот, намагниченность M зависит линейно от приложенного магнитного поля с индукцией B: Однако исторически принято эту линейную зависимость описывать не коэффициентом
В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах наметр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр. 1 Э = 1000/(4π) А/м ≈ 79,5775 А/м. 1 А/м = 4π/1000 Э ≈ 0,01256637 Э.
9. Классификация магнетиков. Парамагнетики и диамагнетики. Магнитная восприимчивость и магнитная проницаемость среды. По магнитным свойствам магнетики (среды, способные намагничиваться в магнитном поле) разделяются на три основные группы: диамагнетики, парамагнетики и ферромагнетики. Диамагнетики - вещества, у атомов (или молекул) которых в отсутствие внешнего магнитного поля нет собственного магнитного момента. Магнитная восприимчивость Примеры диамагнетиков – Н2О, Au, Cu, NaCl. Парамагнетики – вещества атомы или молекулы которых обладают собственными орбитальными магнитными моментами. Магнитная восприимчивость Парамагнетики – Al, Ag, O2, Ca, Na. Закон Кюри для парамагнетиков: магнитная восприимчивость парамагнетиков обратно пропорциональна термодинамической температуре
где С - постоянная Кюри, зависящая от рода вещества, Т – термодинамическая температура. Щелочные и щелочноземельные металлы не подчиняются закону Кюри – их магнитная восприимчивость практически не зависит от температуры. Насыщение намагниченности – состояние парамагнетика, при котором магнитные моменты всех атомов парамагнетика ориентированы по направлению вектора магнитной индукции В. Ферромагнетики - вещества, обладающие спонтанной намагниченностью, сильно изменяющейся под влиянием внешнего магнитного поля. Ферромагнетики – сильномагнитные вещества, их намагниченность в 1010 раз превосходит намагниченность диа- и парамагнетиков. Магнитная восприимчивость В ферромагнетиках внешнее поле многократно усиливается за счет возникновения весьма сильного собственного поля. Ферромагнетики – Fe, Ni, Co. Магнитные свойства ферромагнетиков. 1. Зависимость относительной магнитной проницаемости µ от напряженности Н поля носит сложный характер. Рис.5 2. Зависимость намагниченности от напряженности поля нелинейная. При Н= НS – наступает магнитное насыщение. Рис. 6 3. Зависимость В от Н при Н< НS - нелинейная, при Н> НS - линейная. Рис.7 4. Явление гистерезиса. 5. Наличие точки Кюри Тс, при которой вещество утрачивает ферромагнитные свойства.
Микроскопические плотности токов в намагниченном веществе чрезвычайно сложны и сильно изменяются даже в пределах одного атома. Но во многих практических задачах столь детальное описание является излишним, и нас интересуют средние магнитные поля, созданные большим числом атомов. Как мы уже говорили, магнетики можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики. Диамагнетизм (от греч. dia – расхождение и магнетизм) - свойство веществ намагничиваться навстречу приложенному магнитному полю. Диамагнетиками называются вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т.к. магнитные моменты всех электронов атома взаимно скомпенсированы (например инертные газы, водород, азот, NaCl и др.). При внесении диамагнитного вещества в магнитное поле его атомы приобретают наведенные магнитные моменты. В пределах малого объема Δ V изотропного диамагнетика наведенные магнитные моменты Вектор намагниченности диамагнетика равен:
где n 0 – концентрация атомов, Для всех диамагнетиков У диамагнетиков Парамагнетизм (от греч. para – возле, рядом и магнетизм) - свойство веществ во внешнем магнитном поле намагничиваться в направлении этого поля, поэтому внутри парамагнетика к действию внешнего поля прибавляется действие наведенного внутреннего поля. Парамагнетиками называются вещества, атомы которых имеют, в отсутствие внешнего магнитного поля, отличный от нуля магнитный момент Эти вещества намагничиваются в направлении вектора К парамагнетикам относятся многие щелочные металлы, кислород В отсутствие внешнего магнитного поля намагниченность парамагнетика [χ] = 1 где χ – безразмерная величина, называемая магнитной восприимчивостью, показывает, как вещество реагирует (намагничивается) на внешнее поле. - связь магнитной проницаемости µ и магнитной проницаемости χ. Магнитная проницаемость показывает во сколько раз результирующее магнитное поле в веществе больше внешнего намагничивающего поля макротоков
χ < 0; µ < 1; χ ~ 10-5 ÷ 10-7.
Для парамагнетиков: χ > 0; µ > 1; χ ~ 10-3 ÷ 10-5.
При внесении парамагнетика во внешнее магнитное поле происходит преимущественная ориентация собственных магнитных моментов атомов 10. Поток магнитной индукции. Магнитные цепи. Индукция и напряженность магнитного поля бесконечно длинного соленоида. Поток магнитной индукции — поток вектора магнитной индукции через некоторую поверхность. Величина, равная произведению: модуля вектора магнитной индукции на площадь поверхности и на косинус угла между вектором магнитной индукции и нормалью к поверхности. Магнитная цепь — последовательность взаимосвязанныхмагнетиков, по которым проходит магнитный поток.[1] При расчётах магнитных цепей используется почти полная формальная аналогия с электрическими цепями. В схожем математическом аппарате также присутствует закон Ома,правила Кирхгофа и другие термины и закономерности.[2] Магнитная цепь и сопутствующий математический аппарат используется для расчётов трансформаторов, электрических машин, магнитных усилителей и т. п.[2][3]
11. Поток магнитной индукции. Магнитные цепи. Индукция и напряженность магнитного поля тороида. Тороид – тор, с намотанными на него витками проволоки. В отличие от соленоида, у которого магнитное поле имеется как внутри, так и снаружи, у тороида магнитное поле полностью сосредоточено внутри витков, т.е. нет рассеивания энергии магнитного поля.
где
Если R >>Rвитка, то R ≈r и H = n?.
12. Явление электромагнитной индукции. Основной закон электромагнитной индукции. Правило Ленца. Вывод основного закона электромагнитной индукции из закона сохранения и превращения энергии. Явление электромагнитной индукции заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает индукционный (наведенный) электрический ток. Правило Ленца: индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.
13. Явление самоиндукции при замыкании и размыкании электрической цепи. Индуктивность соленоида. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.) |