АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ИНДЕКСНЫЙ МЕТОД

Читайте также:
  1. ABC-аналіз як метод оптимізації абсолютної величини затрат підприємства
  2. I. ПРЕДМЕТ И МЕТОД
  3. I.ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ
  4. II. Документация как элемент метода бухгалтерского учета
  5. II. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ
  6. II. Методична робота.
  7. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  8. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  9. III. Mix-методики.
  10. III. ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ КОНТРОЛЬНИХ РОБІТ .
  11. III. ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ
  12. III. Методы оценки функции почек

Индекс — представляет собой результат сравнения двух состояний одного явления.

Индексы — один из наиболее распространенных статистических показателей, используемый для экономических расчетов. Наиболее часто используются индексы, характеризующие изменение во времени, т.е. в этом случае индекс представляет собой показатель динамики.

С помощью индексов решаются следующие задачи:

  1. Определяются обобщающие показатели:
    • обобщающие показатели динамики;
    • территориальных сравнений;
    • сравнение с планом.
  2. Изучение динамики средних величин: влияние структуры и структурных сдвигов на динамику средней величины.
  3. Изучение факторов в динамике сложных явлений:
    • относительное влияние факторов на результат;
    • абсолютный прирост результата в зависимости от динамики факторов.

Сравнение может проводиться по отдельным единицам совокупности и по совокупности единиц. В зависимости от этого различают индивидуальные и сложные индексы.

Если сравнение производится по отдельным единицам совокупности, имеем индивидуальный или элементарный индекс. Например, сравнение цены в разных магазинах на один и тот же товар (индивидуальный территориальный индекс), сравнение объема продаж картофеля на двух рынках, сравнение цен на картофель в сентябре по сравнению с маем (индивидуальный индекс цен) и т.д.

В каждом индексе выделяют 3 элемента:

  • индексируемый показатель — это показатель, соотношение уровней которого характеризует индекс
  • сравниваемый уровень — это тот уровень, который сравнивают с другим.
  • базисный уровень — это тот уровень, с которым производится сравнение.

Для расчета индекса необходимо найти отношение сравниваемого уровня к базисному и выразить его в виде коэффициента, если база сравнения приравнивается к единице, или в процентах, если база сравнения принимается за 100%. Обычно расчеты индексов производятся в форме коэффициентов с точностью до третьего знака после запятой, т. е. до 0,001, в форме процентов — до десятых долей процента, т.е. до 0,1%.

Для удобства построения индексов используется специальная символика:

  • i — символ индексируемого показателя — индекс, характеризующий изменение уровня элемента явления.
  • I — с подстрочным индексируемым показателем — для группы элементов или всей совокупности в целом.
  • q — количество проданных товаров или произведенной продукции в натуральном выражении
  • p — цена за единицу товара
  • z — себестоимость единицы продукции
  • w — производительность труда
  • T — отработанное время или численность работников
  • l — средняя заработная плата одного работника
  • 0 — базисный период
  • 1 — отчетный период

 

 Математически элементарные индексы выглядят следующим образом:

Сравнивать можно также агрегатные величины, то есть величины, которые представляют собой произведение других величин. Например, индекс товарооборота характеризует изменение объема продаж, если рассчитать изменение товарооборота по одному наименованию продукции — это будет индивидуальный индекс товарооборота:

p 1 q 1     — объем продаж в отчетном периоде;
p 0 q 0 — объем продаж в базисном периоде.
Общие индексы характеризуют сравнение совокупностей, групп. = .
     

формула Ласпейреса = , формула Пааше = .    

Индекс Фишера – среднегеометрическая суммы Паоше и Ласпириса

 

СРЕДНИЕ ИНДЕКСЫ

Индекс переменного состава Iпер представляет собой отношение двух взвешенных средних величин, характеризующее изменение индексируемого (осредняемого) показателя.

Величина этого индекса характеризует изменение средней взвешенной за счет влияния двух факторов: осредняемого показателя у отдельных единиц совокупности и структуры изучаемой совокупности.
Индекс постоянного (фиксированного) состава Iфикс представляет собой отношение средних взвешенных с одним и теми же весами (т.е. при постоянной структуре).

Индекс постоянного состава учитывает изменение только индексируемой величины и показывает средний размер изменения изучаемого показателя у единиц совокупности.
Индекс структурных сдвигов Iстр характеризует влияние изменения структуры изучаемого явления на динамику среднего уровня индексируемого показателя.

Под структурными изменениями понимается изменение доли отдельных групп единиц совокупности к общей их численности.
Система взаимосвязанных индексов при анализе динамики средних величин имеет вид:



· базисные индексы: ; ; ;

· цепные индексы: ; ; .

Между цепными и базисными индивидуальными индексами существует взаимосвязь, позволяющая переходить от одних индексов к другим — произведение последовательных цепных индивидуальных индексов дает базисный индекс последнего периода:

 

.

Отношение базисного индекса отчетного периода к базисному индексу предшествующего периода дает цепной индекс отчетного периода:

 

; .

 

Это правило позволяет применять так называемый цепной метод, т.е. находить неизвестный ряд базисных индексов по известным цепным и наоборот.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)