АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Прогнозирование с применением уравнения регрессии

Читайте также:
  1. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  2. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  3. Анализ временных рядов и прогнозирование
  4. Аппроксимационная задача линейной регрессии
  5. ВИДЫ НЕЛИН.РЕГРЕССИИ И МЕТОДЫ НАХОЖДЕНИЯ ИХ ПАРАМЕТРОВ
  6. Выбор уравнения регрессии
  7. Выбор формы уравнения множественной регрессии
  8. Вывод основного уравнения гидростатики.
  9. Геометрическая интерпретация уравнения Бернулли
  10. Геометрическая интерпретация уравнения Бернулли.
  11. Гетероскедастичность в уравнениях множественной регрессии, ее признаки и последствия.
  12. Гетероскедастичность в уравнениях множественной регрессии, ее признаки, последствия и методы устранения.

Регрессионные модели могут быть использованы для прогнозирования возможных ожидаемых значений зависимой переменной.

Прогнозируемое значение переменной получается при подстановке в уравнение регрессии ожидаемой величины фактора .

Данный прогноз называется точечным. Значение независимой переменной не должно значительно отличаться от входящих в исследуемую выборку, по которой вычислено уравнение регрессии.

Вероятность реализации точечного прогноза теоретически равна нулю. Поэтому рассчитывается средняя ошибка прогноза или доверительный интервал прогноза с достаточно большой надежностью.

доверительные интервалы, зависят от следующих параметров:

· стандартной ошибки,

· удаления от своего среднего значения ,

· количества наблюдений n

· и уровня значимости прогноза α.

В частности, для прогноза будущие значения с вероятностью (1 - α) попадут в интервал

 

 

(6)

 

Расположение границ доверительного интервала показывает, что прогноз значений зависимой переменной по уравнению регрессии хорош только в случае, если значение фактора Х не выходит за пределы выборки. Иными словами, экстраполяция по уравнению регрессии может привести к значительным погрешностям.

 

 


[1] Большой энциклопедический словарь – М: Изд-во "Большая Российская Энциклопедия", 1997

[2] Термин регрессия (латинское regressio — движение назад) введен английским ста­тистиком Ф. Гальтоном, который, изучая зависимость между ростом родителей и их детей, обнаружил явление «регрессии к среднему» — у детей, родившихся у очень высоких родителей, рост имел тенденцию быть ближе к средней его величине.

 

[3] Термин "регрессия" (regression (лат.) – отступление, возврат к чему-либо) ввел английский статистик Ф. Гальтон. Он исследовал влияние роста родителей и более отдаленных предков на рост детей. По его модели рост ребенка определяется наполовину родителями, на четверть – дедом с бабкой, на одну восьмую прадедом и прабабкой и т.д. Другими словами, такая модель характеризует движение назад по генеалогическому дереву. Ф. Гальтон назвал это явление регрессией как противоположное движению вперед – прогрессу. В настоящее время термин "регрессия" применяется в более широком плане – для описания статистической связи между случайными величинами.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)