АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кодирование с минимальной избыточностью

Читайте также:
  1. Автоматический поиск инструмента и его кодирование
  2. Адаптивное кодирование.
  3. Блок 3. Кодирование информации.
  4. Блочное двоичное кодирование
  5. Глава 6. Кодирование
  6. Графические модели и декодирование методом передачи сообщений
  7. Двоичное кодирование графической информации
  8. Двоичное кодирование звука
  9. Двоичное кодирование звука
  10. Двоичное кодирование звуковой информации
  11. Двоичное кодирование звуковой информации.
  12. Двоичное кодирование информации в компьютере

Для практики важно, чтобы коды сообщений имели по возможности наименьшую длину. Алфавитное кодирование пригодно для любых сообщений, то есть S = A*. Если больше про множество S ничего не известно, то точно сформулировать задачу оптимизации затруднительно. Однако на практике часто доступна дополнительная информация. Например, для текстов на естественных языках известно распределение вероятности появления букв в сообщении. Использование такой информации позволяет строго поставить и решить задачу построения оптимального алфавитного кодирования.

Минимизация длины кода сообщения

Если задана разделимая схема алфавитного кодирования , то любая схема , где является перестановкой , также будет разделимой. Если длины элементарных кодов равны, то перестановка элементарных кодов в схеме не влияет на длину кода сообщения. Но если длины элементарных кодов различны то длина кода сообщения зависит от состава букв в сообщении и от того, какие элементарные коды каким буквам назначены.

Если заданы конкретное сообщение и конкретная схема кодирования, то нетрудно подобрать такую перестановку элементарных кодов, при которой длина кода сообщения будет минимальна.

Пусть k1,…,kn – количества вхождений букв a1,...,an в сообщение S,а l1,…,ln – длины элементарных кодов , соответственно. Тогда, если и , то . Действительно, пусть kj=k+a, ki=k и lj=l, li=l+b, где a,b 0. Тогда

Отсюда вытекает алгоритм назначения элементарных кодов, при котором длина кода конкретного сообщения S будет минимальна: нужно отсортировать буквы в порядке убывания количества вхождений, элементарные коды отсортировать в порядке возрастания длины и назначить коды буквам в этом порядке.

ЗАМЕЧАНИЕ

Этот простой метод решает задачу минимизации длины кода только для фиксированного сообщения S и фиксированной схемы .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)