|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основные термины и положения термодинамикиЛекция №1 Элементы химической термодинамики, термодинамики растворов И химической кинетики Значение химии в медицине · 78 элементов входят в состав живых организмов. · 44 элемента составляют лекарственные препараты. · Изотопы 38 элементов используются в диагностике и радиотерапии различных заболеваний. · Более 70 элементов входят в состав материалов, применяемых для изготовления медицинской аппаратуры, приборов, инструментов, перевязочных средств, искусственной крови, различных протезов, зуботехнических материалов и др. · В организме человека реализуется около 100 тысяч химических превращений. · Живая клетка функционирует по строгим законам химии. · Более 75 % лекарственных средств производит химико-фармацевтическая промышленность. Задача, состоящая перед медиками в ближайшее время, предупреждать, а не лечить болезни. Чтобы стать высококвалифицированным специалистом нужно помнить высказывание М.В. Ломоносова: «… Медик без довольного познания химии совершенен быть не может… От одной химии уповать можно на исправление недостатков лечебной науки» Термодинамика – наука, изучающая общие законы взаимного превращения одной формы энергии в другую. К настоящему времени термодинамика содержит два основных раздела: 1. Равновесная термодинамика (термодинамика изолированных систем) В основном разработана в середине 19-го – начале 20-го века и содержит три закона – три «Начала»: · -в середине 19-го века Ю. Р. Майером, Дж. Джоулем и Г. Гельмгольцем был сформулирован первые закон термодинамики - «Первое начало термодинамики». · - в 1850 году Р. Клаузиусом, и независимо от него в 1851 году У. Томсоном было сформулировано «Второе начало термодинамики». · -в 1906 году В. Нернст сформулировал «Третье начало термодинамики». 2. Неравновесная термодинамика(термодинамика открытых систем) Разработана в 20-м веке. Содержит два основных подраздела: · -слабо неравновесную термодинамику, основы которой разработаны в 1931 Л. Онсагером; · -сильно неравновесную термодинамику, в основном разработанную Г. Хакеном, И. Пригожиным и Р. Томом в середине 20-го века. Первой работой в области неравновесной термодинамики в биологии является опубликованная в 1935 году книга Э.Бауэра «Теоретическая биология», в которой был сформулирован «Всеобщий закон биологии». Основные термины и положения термодинамики При изучении термодинамики пользуются определенными понятиями. Система – это совокупность материальных объектов (тел), ограниченных каким-либо образом от окружающей среды. Это может быть раствор любого вещества, организм животного, состоящий из взаимодействующих элементов- органов. Элементами называются части, обладающие определенными свойствами. В случае биологических объектов имеем ряд: Биосфера – биоценоз – популяция – организм – орган – ткань – клетка – органелла - молекула. При взаимодействии термодинамической системы с окружающей средой происходит обмен энергией. Возможны два способа передачи энергии. Упорядоченная форма передачи энергии, которая связана с изменением внешних (объема и давления) параметров состояния системы, называют работой. Неупорядоченную форму передачи энергии называют теплотой. В термодинамике под термином «работа» чаще понимают не сам процесс, а количество передаваемой при этом энергии. Работу, производимую системой над окружающей средой, принято считать положительной, работу, производимую над системой принято считать отрицательной. Под термином «теплота» понимают не сам процесс, а количество передаваемой энергии Q. Q положительна, если система получает некоторое количество энергии в форме теплоты, при передаче энергии в противоположном направлении величину Q считают отрицательной. Единица измерения в СИ – джоуль (Дж). Термодинамические системы могут быть следующими: • Гомогенная – система, в которой каждое свойство ее (параметр) имеет одно и то же значение во всех точках объема или меняется плавно от точки к точке. • Гетерогенная – такая система, которая состоит из нескольких гомогенных систем, отделенных друг от друга поверхностью разделяя фаз, на которой свойства меняются скачком. Организм человека состоит из многофазных систем – ткани, кровь, лимфа, слюна и др. •Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией в форме работы или теплоты. • Закрытая (замкнутая) система – система, которая может обмениваться с окружающей средой лишь энергией и не может обмениваться веществом; • Открытая система – система, которая обменивается с окружающей средой и энергией, и веществом. • Адиабатная система – нет теплообмена с окружающей средой. Живые организмы являются открытыми системами: организм человека за 40 лет жизни потребляет в среднем 40 т воды, 6 т пищи и около 12 млн л кислорода. Постоянный обмен между системой окружающей средой составляет материальную сущность жизнедеятельности - метаболизм. Состояние любой термодинамической системы характеризуется двумя группами параметров: Интенсивными термодинамическими параметрами (давление, температура и др.), не зависящими от массы или числа частиц в системе; Экстенсивными термодинамическими параметрами (общая энергия, энтропия, внутренняя энергия), зависящими от массы или числа частиц в системе. Изменение параметров термодинамической системы называется термодинамическим процессом. Различают - изотермические (при постоянной температуре, Т = соnst), - изобарные (при постоянном давлении, Р = соnst), - изохорные (при постоянном объеме, V = соnst), - адиабатические процессы (без теплообмена с окружающей средой). Энергию системы (W) можно представить как совокупность двух частей: зависящую от движения и положения системы как целого (W ц) и не зависящую от этих факторов (U).
Вторую составляющую этой совокупности U называют внутренней энергией системы. Она включает энергию теплового движения частиц, а также химическую и ядерную энергию, определяющую поступательное, колебательное и вращательное движение молекул, внутримолекулярное взаимодействие и колебание атомов, энергию вращения электронов. Внутренняя энергия в свою очередь разделяется на свободную энергию и связанную энергию. Свободная энергия (G) – та часть внутренней энергии, которая может быть использована для совершения работы. Связанная энергия (W св) – та часть энергии, которую нельзя превратить в работу. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |