АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Особенности живых организмов с позиции термодинамики

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ
  3. III. Психические свойства личности – типичные для данного человека особенности его психики, особенности реализации его психических процессов.
  4. IV. Особенности правового регулирования труда беременных женщин
  5. V. Особенности развития предпринимательства
  6. Аграрная реформа 1861 г., ее механизм и особенности проведения в белорусских губерниях.
  7. Агрегатный индекс цен: особенности построения с учетом разных весов
  8. АДАПТАЦИЯ И ОСНОВНЫЕ СПОСОБЫ ПРИСПОСОБЛЕНИЯ ЖИВЫХ ОРГАНИЗМОВ К ЭКСТРЕМАЛЬНЫМ УСЛОВИЯМ СРЕДЫ
  9. Акты применения права, их особенности и виды
  10. Акты применения права: понятие, особенности и виды.
  11. Акты толкования права: понятие, особенности, виды.
  12. АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ДЕТЕЙ МЛАДШЕГО ШКОЛЬНОГО ВОЗРАСТА

Превращение энергии в процессе обмена веществ в организме осуществляется в полном соответствии с первым и вторым законами термодинамики. Тем не менее живой организм, как объект термодинамических исследований отличается от систем химической термодинамики. Вот некоторые особенности:

· Живой организм – открытая система, непрерывно обменивающаяся с окружающей средой и веществом и энергией.

· Приложение второго закона т/д-ки к живым системам немыслимо без учета влияния биологических закономерностей. Характер изменения энтропии, имеющий решающее значение в неживых системах, в случае биологических систем имеет лишь подчиненное значение.

· Все биохимические процессы, происходящие в клетках живых организмов, протекают при постоянной температуре, давлении, при незначительных перепадах концентраций, без резких изменений объема и др.

Основным источником энергии живого организма является химическая энергия, заключенная в пищевых продуктах, часть которой расходуется на:

· Совершение работы внутри организма, связанной с дыханием, кровообращением, перемещением метаболитов и др.

· Нагревание вдыхаемого воздуха, потребляемой пищи, воды.

· Покрытие потерь теплоты в окружающую среду при непосредственной радиации и испарении влаги с поверхности тела, с вдыхаемым воздухом, с продуктами жизнедеятельности.

· Совершение внешней работы со всеми перемещениями и трудовая деятельность человека.

Главными компонентами пищи являются углеводы, жиры и белки.

Калорийность, то есть энергия, выделяемая в процессе диссимиляции с образованием углекислого газа и воды, составляет в среднем:

Углеводы - 17 кДж/г

Жиры – 40 кДж/г

Белки – 17 кДж/г.

При нормальной трудовой деятельности энергетические затраты человека покрываются за счет углеводов на 60 %, жиров – на 25 %, белков – на 15 %. При правильном питании норма суточного потребления (без учета тяжёлого физического труда) составляет:

Углеводов 400-500 г,

Жиров 60- 70 г,

Белков 80- 100г.

Научной основой для этих расчетов является первый закон термодинамики. С пищей в организм поступают довольно сложные высокомолекулярные соединения, которые имеют много химических связей и нереализованного химического сродства. Такие вещества характеризуются небольшим значением энтропии, высоким значением энергии Гиббса и энтальпии. В процессе усвоения пищи из больших молекул углеводов, жиров, белков, образуются дочерние молекулы с более простой структурой и более прочными химическими связями СО2, Н2О, NH3 и др. Этот процесс диссимиляции вещества, при котором из меньшего числа частиц образуется большее, влечет за собой увеличение энтропии (ΔS > 0). За счет упрочнения химических связей и реализации химического сродства энергия Гиббса системы убывает. Аналогичные изменения претерпевает и энтальпия системы (ΔH<0).

В 1946 г. Американский ученый И. Пригожин предложил одну из основных теорем термодинамики открытых систем: «В стационарной термодинамически открытой системе скорость производства энергии, обусловленного протеканием в ней необратимых процессов, принимает минимальное для данных условий положительное значение.

Поскольку энтропия является мерой рассеяния энергии, теорема Пригожина приводит к важнейшему заключению. Пристационаром состоянии рассеяние энергии Гиббса открытой системой оказывается минимальным. Таким образом, живой организм, представляющий открытую стационарную систему, поставлен природой в выгодные с точки зрения энергообеспечения условия: поддержание постоянства внутренней среды (гомеостазиса) требует минимального потребления энергии Гиббса.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)