|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Ускорение
В некоторый момент времени t0 материальная точка находится в положении А и имеет скорость , а через некоторое время в момент t1 = t0 + - в положении В и имеет скорость (рис. 1.30). Если вектор перенести в точку А (обозначено пунктиром на рис. 1.30), а через концы векторов и провести новый вектор , то получим векторное равенство . (1.34) Рис. 1.30
Среднее ускорение движения - это изменение скорости материальной точки за промежуток времени, в течение которого это изменение произошло: (1.35) Мгновенное ускорение (в дальнейшем, просто ускорение) – это предел среднего ускорения при бесконечном уменьшении промежутка времени наблюдения, т. е. . (1.36) Таким образом, ускорение – это первая производная от скорости или вторая производная от закона движения по времени (четвертая характеристика движения). Ускорение является векторной величиной и ее направление совпадает с направлением вектора в его предельном положении, т. е. вектор ускорения всегда располагается с той стороны от касательной к траектории движения, что и сама траектория. Аналогично скорости компоненты вектора ускорения можно представить через компоненты вектора скорости и компоненты радиус – вектора положения точки: , (1.37) В этом случае модуль ускорения можно определить как: (1.38)
Движение материальной точки определяется четырьмя основными характеристиками: законом движения, траекторией, скоростью и ускорением.
1.2.2. Естественный способ задания движения
Данный способ применяется только в том случае, когда известна траектория движения. Для задания движения применяется прямоугольная естественная система координат (рис. 1.31), которая характеризуется тем, что: - начало координат всегда совпадает с положением материальной точки; - первая ось (ось τ) всегда располагается на касательной к траектории движения и направлена в ту сторону, куда движется материальная точка (касательная); - вторая ось (ось η) всегда располагается на нормали к траектории движения (всегда перпендикулярна касательной к траектории и находится в плоскости движения (если движение пространственное - то в соприкасающейся плоскости) и направлена в сторону вогнутости траектории (нормаль); - третья ось (ось β) всегда располагается на бинормали к траектории (т.е. перпендикулярна и касательной, и нормали) и направлена так, чтобы образовывать с первой и второй осью правую систему координат (бинормаль). Рис. 1.31.
Зависимость расстояния по времени от текущего положения точки до некоторого начального, измеренного вдоль траектории, S(t) является естественным законом движения. В этом случае для скорости справедливо соотношение: , (1.39) Разложив по осям вектор скорости в естественной системе координат, получим: , (1.40) Вектор скорости проецируется только на одну ось – ось τ. А вектор ускорения будет проецироваться только на две оси - ось τ и ось η, а третья проекция . Величины проекций ускорения и определяются по системе уравнений: , (1.41) где - радиус кривизны траектории. Связь между компонентами скоростей и ускорений
Поскольку вектора скорости и ускорения в каждый момент времени определяются равнозначно, то между их компонентами при разложении в различных системах координат будут иметь место следующие зависимости: , (1.42) , (1.43) Дифференцируя первое из приведенных выражений получаем: . (1.44) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |