|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основы спектрального анализаОтмахов В.И., Адамова Е.П., Путьмаков А.Н.
КАЧЕСТВЕННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ C ИСПОЛЬЗОВАНИЕМ МНОГОКАНАЛЬНОГО АНАЛИЗАТОРА ЭМИССИОННЫХ СПЕКТРОВ (МАЭС) УПРАВЛЯЕМОГО ПРОГРАММОЙ «АТОМ»
Томск – 2005 Одобрено кафедрой аналитической химии Зав. Кафедрой аналитической химии, Профессор __________ Г.М. Мокроусов Рассмотрено и утверждено методической комиссией Химического факультета Протокол № ___ от «___» ____________2005г. Председатель комиссии, Доцент ____________ Т.С. Минакова
Оглавление
Цель работы……………………………………………………………. 2
Введение...................................................................................................2
1. Основы спектрального анализа.......................................................3
2. Сущность качественного спектрального анализа.........................5
3. Устройство и работа спектрального прибора................................6
4. Порядок работы с МАЭС и программой АТОМ............................12 4.1. Снятие спектров..................................................................14 4.2. Выбор спектральных линий................................................16 4.3. Работа с окном Спектр........................................................17
5. Методики расшифровки спектров....................................................19 5.1. Частный качественный анализ...........................................20 5.2. Полный качественный анализ............................................21
6. Экспериментальная часть.................................................................23
7. Список используемой литературы...................................................25 Цель работы Ознакомить студентов с новой регистрацией спектров и компьютерной обработкой аналитических сигналов при проведении атомно-эмиссионного спектрального анализа. Ознакомить с особенностями работы программы АТОМ и дать навыки по методике проведения качественного анализа с использованием новой приборной базы. Задачей лабораторных работ является определение качественного состава образцов металлов и сплавов с целью их идентификации.
Введение Спектральный анализ принадлежит к числу основных методов исследования состава вещества. Начиная с 30-х годов и до настоящего времени, происходит непрерывное совершенствование методов качественного и количественного спектрального анализа и все более широкое его проникновение в технику для решения чисто практических задач контроля производства металлов и сплавов, химических реактивов, особо чистых веществ геологических объектов и др. [1-4]. Велико значение прикладной спектроскопии как тончайшего аналитического метода, дающего возможность экспериментатору анализировать состав и структуру вещества.
Основы спектрального анализа
В основе атомно-эмиссионного спектрального анализа лежит способность атомов переходить в возбужденное состояние и испускать электромагнитное излучение в оптическом диапазоне. Физико-химические гетерофазные процессы приводящие к возбуждению атомов протекают в источниках возбуждения спектров (ИВС), в качестве которых применяются различные электрические разряды. Возникновение спектра всегда связано с изменением внутренней энергии атома или молекулы. Частица, обладающая минимальной энергией, называется невозбужденной, а ее состояние нормальным или основным. Путем внешнего воздействия частице сообщается дополнительная энергия, поглотив которую, она может перейти в возбужденное состояние. Для каждого атома существует свой ряд энергетических состояний. Энергия поглощается строго определенными порциями, которые равны разности двух энергетических уровней основного и возбужденного. Если известна энергия этих уровней, то можно рассчитать частоту электромагнитного излучения. Для возбуждения атомных ядер нужна энергия в сотни электрон-вольт (эв). В ИВС кинетическая энергия измеряется десятками эв, поэтому ядра находятся в нормальном состоянии, а появление спектров обязано движению электронов по уровням. Известно, что число уровней в атоме много больше, чем электронов, в нормальном состоянии электроны занимают нижние слои, при этом атом находится в нормальном невозбужденном состоянии. При передаче атому энергии электроны переходят на любой из свободных уровней. Внешнему воздействию подвергаются, прежде всего, электроны, находящиеся на верхнем уровне, и эти электроны в спектральном анализе называют оптическими. Для перевода оптического электрона на близлежащий уровень необходима вполне определенная энергия, которая называется энергией возбуждения. В возбужденном состоянии атом пребывает 10-8 сек. и возвращаясь в нормальное состояние, излучает свет в виде спектральной линии. Процессы возбуждения заключаются в передаче атомом энергии, превышающей энергию возбуждения оптического электрона. Передача энергии может осуществляться несколькими путями [1]: – путем столкновения атома с быстро движущимися частицами (ионами, атомами, молекулами, электронами); – путем столкновения с уже возбужденными частицами, при переходе энергии возбуждения этих частиц в энергию возбуждения рассматриваемых атомов; – путем поглощения атомами световых квантов и перехода энергии этих квантов в энергию возбуждения атомов; – путем перехода энергии, освободившейся в результате протекания различных химических реакций, в энергию возбуждения атома. В реальных источниках возбуждения все эти процессы имеют место. Однако всегда можно выделить процессы, которые в данных источниках играют основную роль. В электрических источниках разряда, которые чаще всего используются в практике спектрального анализа, основную роль играют процессы соударения частиц, а именно, для дуговых и искровых источников соударение частиц с электронами. Все остальные процессы играют второстепенную роль. При температурах реализуемых в ИВС анализируемые вещества переходят в газообразное состояние, частицы передвигаются с огромными скоростями, сталкиваясь друг с другом обмениваются энергией. При этом возможны два случая [1]: – если энергия электрона сталкивающегося атома меньше энергии возбуждения, то возбуждения не происходит, кинетическая энергия перераспределяется, и такие соударения называются упругими; – для возбуждения атома необходимо, чтобы энергия электрона была не меньше энергии возбужденного уровня. Соударения, сопровождающиеся возбуждением, называются неупругими. Энергия электрона может также передаваться и возбужденным атомам. Атом при этом возбуждается до более высокого возбужденного состояния - этот процесс называется ступенчатым возбуждением. Может происходить наоборот, энергия возбужденного атома передается электрону. Энергия электрона возрастает, а атом переходит в нормальное состояние безизлучательным путем. Рассчитать все элементарные процессы, происходящие в дуговом разряде, и установить точную концентрацию всех частиц практически невозможно, так как необходимо знать числовые характеристики всех элементарных процессов, таких как функции возбуждения и ионизации, распределение электронов по скоростям, времени возбуждения атомов. Однако, эти задачи упрощаются, если допустить, что исследуемая плазма термически равновесна, такое допущение возможно, так как в используемых источниках возбуждения обеспечивается интенсивное поступление атомов в зону разряда, и относительно высокая температура, благодаря чему концентрация частиц в плазме высока, отсюда независимо от массы частиц их скорости будут близки вследствие малого пути пробега. В результате интенсивного обмена энергии всех частиц в плазме устанавливается термическое равновесие, кинетическая энергия частиц усредняется и зависит только от температуры плазмы дугового разряда. Закон распределения частиц каждого сорта по скоростям известен под именем закона распределе6ния Максвела [1]: , (1) – масса частиц (электронов, атомов, ионов); – скорость частиц (электронов, атомов, ионов); – температура источника возбуждения. В силу термического равновесия в плазме также наступает равновесие между процессами возбуждения и переходом атома в нормальное состояние. Концентрация атомов, находящихся в возбужденном состоянии, описывается уравнением Больцмана, которое является основным базовым уравнением спектрального анализа [1,2]: , (2) - число атомов в возбужденном состоянии при температуре источника; - общее число атомов в зоне разряда; - статистические веса возбужденного и основного уровня; - энергия возбуждения атом; - константа Больцмана; – температура источника возбуждения.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |