|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Пучок плоскостей
Пучок плоскостей – множество всех плоскостей, проходящих через заданную прямую – ось пучка. Чтобы задать пучок плоскостей, достаточно задать его ось. Пусть уравнение этой прямой задано в общем виде:
Составить уравнение пучка – значит составить уравнение, из которого можно получить при дополнительном условии уравнение любой плоскости пучка, кроме, б.м. одной. Умножим II уравнение на л и сложим с I уравнением: A1x + B1y + C1z + D1 + л(A2x + B2y + C2z + D2) = 0 (1) или (A1+ лA2)x + (B1+ лB2)y + (C1 + лC2)z + (D1 + лD2) = 0 (2). л – параметр – число, которое может принимать действительные значения. При любом выбранном значении л уравнения (1) и (2) линейные, т.е. это – уравнения некоторой плоскости. 1. Покажем, что эта плоскость проходит через ось пучка L. Возьмем произвольную точку M0(x0, y0, z0)
Следовательно, плоскость, описываемая уравнением (1) или (2) принадлежит пучку. 2. Можно доказать и обратное: всякая плоскость, проходящая через прямую L, описывается уравнением (1) при соответствующем выборе параметра л. Пример 1. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + y + 5z – 1 = 0 и 2x + 3y – z + 2 = 0 и через точку М(3, 2, 1). Записываем уравнение пучка: x + y + 5z – 1 + л(2x + 3y – z + 2) = 0. Для нахождения л учтем, что М x + y + 5z – 1 Пример 2 (Э). Составить уравнение плоскости, которая проходит через прямую Запишем 3x – y + 2z + 9 + 17x + 17z – 51 = 0; 20x – y + 19z – 42 = 0. Пример 3 (Э). Составить уравнение плоскости, проходящей через прямую
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (2.789 сек.) |