АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Механика манипуляторов

Читайте также:
  1. I. КЛАССИЧЕСКАЯ МЕХАНИКА
  2. I. МЕХАНИКА И ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
  3. II. КВАНТОВАЯ МЕХАНИКА
  4. V2: Механика жидкости и газа
  5. Биомеханика (переход к курсу биофизики)
  6. БИОМЕХАНИКА КОЛЕННОГО СУСТАВА
  7. Биомеханика ударных действий
  8. Возникновение первой науки: ньютоновская механика
  9. Динамика манипуляторов промышленных роботов. Силовой расчет манипулятора
  10. Использование манипуляторов
  11. Квантовая механика
  12. Курс Лекций. Теоретическая механика

2.1.1 Задачи механики манипуляторов

К основным задачам механики манипуляторов можно отнести:

- разработку методов синтеза и анализа исполнительных механизмов (включая механизмы приводов);

- программирование движения манипулятора;

- расчет управляющих усилий и реакций в КП;

- уравновешивание механизмов манипуляторов.

Эти задачи решаются на базе общих методов исследования структуры, геометрии, кинематики и динамики систем с пространственными многоподвижными механизмами. Каждая из рассматриваемых задач может быть сформулирована как прямая (задача анализа) или как обратная (задача синтеза). При определении функций положения механизма, в прямой задаче находят закон изменения абсолютных координат выходного звена по заданным законам изменения относительных или абсолютных координат звеньев. В обратной – по заданному закону движения схвата находят законы изменения координат звеньев, обычно, линейных или угловых перемещений в приводах. Решение обратной задачи или задачи синтеза более сложно, так как часто она имеет множество допустимых решений, из которых необходимо выбрать оптимальное. В обратной задаче кинематики по требуемому закону изменения скоростей и ускорений выходного звена определяются соответствующие законы изменения скоростей и ускорений в приводах манипулятора. Обратная задача динамики заключается в определении закона изменения управляющих сил и моментов в приводах, обеспечивающих заданный закон движения выходного звена.

2.1.2 Кинематический анализ механизма манипулятора

Первая и основная задача кинематики – определение функции положения. Для пространственных механизмов наиболее эффективными методами решения этой задачи являются векторный метод и метод преобразования координат. При решении прямой задачи о положении схвата манипулятора обычно используют метод преобразования координат. Из множества методов преобразования координат, которые отличаются друг от друга правилами выбора осей локальных систем координат, для манипуляторов обычно используется метод Денавита и Хартенберга.

При решении задачи о положениях необходимо: в прямой задаче определить положение выходного звена как функцию перемещений в приводах, в обратной – заданное положение выходного звена представить как функцию перемещений в приводах. Выбор расположения и ориентации локальных систем координат должен обеспечивать выполнение этих задач. При использовании метода Денавита и Хартенберга оси координат располагаются по следующим правилам:

1. Для звена i ось z i направляется по оси кинематической пары, образуемой им со звеном (i +1). Начало координат размещают в геометрическом центре этой пары.

2. Ось xi направляется по общему перпендикуляру к осям z i-1 и z i с направлением от z i-1 к z i. Если оси z i-1 и z i совпадают, то x i перпендикулярна к ним и направлена произвольно. Если они пересекаются в центре кинематической пары, то начало координат располагается в точке пересечения, а ось x i направляется по правилу векторного произведения (кратчайший поворот оси z i до совмещения с z i-1 при наблюдении с конца x i должен происходить против часовой стрелки).

3. Ось y i направляется так, чтобы система координат была правой.

В прямой задаче необходимо определить положение схвата манипулятора и связанной с ним системы координат Mxnynzn по отношению к неподвижной или базовой системе координат Kx 0 y 0 z 0. Это осуществляется последовательными переходами из системы координат звена i в систему координат звена i -1. Согласно принятому методу, каждый переход включает в себя последовательность четырех движений: двух поворотов и двух параллельных переносов, осуществляемых в указанной последовательности (см. рис. 2.1):

  • поворот i -ой системы вокруг оси xi на угол -qi до параллельности осей zi и zi-1 (положительное направление поворота при наблюдении с конца вектора xi против часовой стрелки);
  • перенос вдоль оси xi на величину -ai до совмещения начала системы координат Oi с точкой пересечения осей xi и z i-1 (отсчет по оси xi от точки пересечения оси xi и оси z i-1);
  • перенос вдоль оси z i-1 на величину -si, после которого начало системы координат Oi оказывается в начале координат Oi -1 системы (i -1) (отсчитывается по оси zi -1 от ее начала координат Oi -1 до точки ее пересечения с осью xi);
  • поворот вокруг оси zi- 1 на угол -ji, до тех пор, пока ось xi не станет параллельной оси xi- 1 (положительное направление поворота при наблюдении с конца вектора zi -1 против часовой стрелки).

 

Рис. 2.1. Переход из системы координат звена i в систему координат звена i-1

 

Необходимо отметить, что знак угла поворота не имеет значения, так как в матрицах перехода используются направляющие косинусы (четные функции). Целесообразно рассматривать угол, обеспечивающий кратчайший поворот оси старой системы i до совмещения (параллельности) с соответствующей осью новой (i -1). Перемещения начала координат определяются как координаты начала старой системы Oi в новой Oi- 1.

В манипуляторах обычно используются одноподвижные кинематические пары или вращательные, или поступательные. Оба относительных движения как вращательное, так и поступательное, реализуются в цилиндрических парах. Поэтому при общем представлении механизма используются (рис.2.1) цилиндрические пары.

Матрицы перехода их системы Oi в систему Oi-1 можно записать так:

,

где: – матрица поворота вокруг оси xi на угол -qi, – матрица переноса вдоль оси xi на -ai, – матрица переноса вдоль оси zi- 1 на -si, – матрица поворота вокруг оси zi- 1 на угол -ji.

В этих матрицах переменные si и j i соответствуют относительным перемещениям звеньев в кинематических парах и являются обобщенными координатами манипулятора, определяющими конфигурацию механизма в рассматриваемом положении. Переменные ai и qi определяются конструктивным исполнением звеньев манипулятора, в процессе движения они остаются неизменными.

Положение некоторой произвольной точки М в системе координат звена i определяется вектором rMi, а в системе координат звена (i -1) – вектором rMi- 1. Эти радиусы связаны между собой через матрицу преобразования координат Мi следующим уравнением:

,

где: – матрица перехода из i -ой системы координат в (i – 1) -ю.

.

Рассмотрим шестиподвижный манипулятор в исходном или начальном положении (рис. 2.2). За начальное положение принимается такое, в котором все относительные обобщенные координаты равны нулю. Переход из системы координат любого i -го звена к неподвижной или базовой системе записывается в виде

или ,

где – матрица преобразования координат i- ой системы в координаты базовой системы координат.

Рис. 2.2. Шестиподвижный манипулятор в исходном или начальном положении

 

Для схемы, изображенной на рис. 2.2, радиус rM6 = 0, а радиус rM0 определится по формуле

,

то есть положение выходного звена манипулятора определяется матрицей Тn. Элементы этой матрицы определяют положение центра схвата точки М и ориентацию его в пространстве. Четвертый столбец определяет, декартовы координаты точки М (проекции вектора rM 0на оси координат). Третий столбец содержит направляющие косинусы оси zn системы координат, связанной со схватом, или вектора подхода , который характеризует направление губок схвата (рис.2.3). Второй столбец определяет направление оси yn или вектора ориентации , который проходит через центр схвата по оси перпендикулярной рабочим поверхностям его губок. В первом столбце содержатся направляющие косинусы оси xn или вектора . Углом подхода схвата называется угол между вектором подхода и базовым вектором

,

где – орт вектора неподвижной или базовой системы координат. С учетом сказанного, матрица Tn может быть представлена в следующем виде

.

Рис. 2.3. Ориентация схвата манипулятора

 

В результате матричных преобразований получаем радиус-вектор точки М схвата в функции обобщенных координат. Обычно, за обобщенные координаты принимают линейные и угловые перемещения в кинематических парах или на выходных валах приводов манипулятора. В механизме с n подвижностями в общем виде функцию положения схвата можно записать так

где q 1, q 2, ... qn – обобщенные координаты манипулятора.

При кинематическом анализе манипулятора в прямой задаче необходимо определить линейные и угловые скорости и ускорения схвата при заданных угловых и линейных обобщенных скоростях и ускорениях (обычно относительных скоростях и ускорениях в кинематических парах механизма). В обратной задаче по заданному закону изменения скоростей и ускорений схвата определяются законы изменения скоростей и ускорений в КП или на выходных звеньях приводов. Решение прямой задачи кинематики для точки М схвата можно получить продифференцировав четвертый столбец матрицы Тn по времени

.

Угловую скорость и угловое ускорение схвата можно определить векторным суммированием относительных угловых скоростей во вращательных КП механизма. Так как вектора угловых скоростей, при данном выборе ориентации осей координат, совпадают с осью z, то угловая скорость схвата

где орт оси z системы координат, расположенной в центре КП, соединяющей звено i и звено i- 1, m – число вращательных КП в механизме.

Дифференцируя это выражение по времени, получим формулу для определения углового ускорения схвата:

 

2.1.3 Динамика манипуляторов промышленных роботов. Силовой расчет манипулятора

Из большого разнообразия задач динамики манипуляторов рассмотрим две: силовой расчет и расчет быстродействия ПР. При силовом расчете манипуляторов решается задачи по определению внешних силовых управляющих воздействий, обеспечивающих требуемый закон движения механизма, и по расчету реакций в кинематических парах. Первую часть часто называют задачей синтеза управления. При силовом расчете обычно применяется метод кинетостатики, основанный на принципе Д'Аламбера. По этому методу к внешним силам и моментам, приложенным к звеньям механизма, добавляются расчетные силы инерции, которые обеспечивают силовую уравновешенность системы и позволяют рассматривать подвижную систему в квазистатическом равновесии, то есть, как условно неподвижную. Силовой расчет выполняется при заданной полезной нагрузке , известных законах движения звеньев и (из предварительного кинематического расчета), известных инерционных характеристиках звеньев: массах звеньев mi и их моментах инерции Isi. По этим данным определяются главные вектора и главные моменты сил инерции для каждого из звеньев механизма. Для открытой кинематической цепи решение начинаем с выходного звена – схвата. Отброшенные связи звена n со звеном n-1 и выходным валом привода звена n заменяем реакциями и и составляем кинетостатические векторные уравнения равновесия сил и моментов для звена n (рис. 2.4):


где – вектор момента в кинематической паре (проекция этого вектора на ось z является движущим моментом привода в КП, то есть ).

Рис. 2.4. Схема силового расчета манипулятора

 

Проецируя векторные уравнения на оси координат, получим систему шести алгебраических уравнений откуда определим шесть неизвестных

Далее рассматривается равновесие звена n- 1. При этом в месте его присоединения к звену n прикладываются реакции со стороны звена n

,

равные по величине и противоположные по направлению реакциям, определенным на предыдущем этапе расчета. Так последовательно составляются уравнения силового равновесия для всех n звеньев механизма. Из решения полученной системы 6n уравнений определяются реакции в кинематических парах, движущие силы и моменты.

 

2.1.4 Уравновешивание манипуляторов

В большинстве кинематических схем манипуляторов приводы воспринимают статические нагрузки от сил веса звеньев. Это требует значительного увеличения мощностей двигателей приводов и моментов тормозных устройств. Для борьбы с этим используют три метода:

· используют кинематические схемы манипуляторов, в которых силы веса звеньев воспринимаются подшипниками кинематических пар. На мощность приводов и тормозных устройств при таком решении силы веса оказывают влияние только через силы трения в парах. В качестве примера можно привести кинематическую схема робота SCARA (рис. 2.5). Недостатком этого метода являются большие осевые нагрузки в подшипниках.

· уравновешивание звеньев манипулятора с помощью корректировки их массы. При этом центр масс звена с помощью корректирующих масс смещается в центр кинематической пары (рис. 2.6). Недостатком этого метода является значительное увеличение массы манипулятора и моментов инерции его звеньев.

Рис. 2.5. Кинематическую схема робота SCARA

 

· уравновешивание сил веса звеньев манипулятора с помощью упругих разгружающих устройств – пружинных разгружателей или уравновешивателей. Эти устройства не позволяют обеспечить полную разгрузку приводов от действия сил веса на всем относительном перемещении звеньев. Поэтому конструкция этих устройств включает кулачковые или рычажные механизмы, которые согласуют упругую характеристику пружины с характеристикой уравновешиваемых сил веса звеньев. На рис. 2.7 показана схема примышленного робота в котором привод вертикального перемещения руки снабжен механизмом для силовой разгрузки, состоящим из пружины и кулачкового механизма с профилем выполненным по спирали Архимеда.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)