АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Физические Задачи, приводящие к уравнениям эллиптического типа. Постановка краевых задач предельные случаи

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. 1.1. Пример разработки модели задачи технического контроля
  3. I. 1.2. Общая постановка задачи линейного программирования
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. 3.1. Двойственная задача линейного программирования
  6. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  7. I. ЗАДАЧИ ПЕДАГОГИЧЕСКОЙ ПРАКТИКИ
  8. I. Значение и задачи учета. Основные документы от реализации продукции, работ, услуг.
  9. I. Решение логических задач средствами алгебры логики
  10. I. Розв’язати задачі
  11. I. Ситуационные задачи и тестовые задания.
  12. I. Цель и задачи дисциплины

При исследовании стационарных процессов различной физической природы(колебания, теплопроводность, диффузия и др.)обычно приходят к уравнениям эллиптического типа. Если рассматривать электричество, то уравнение Максвелла превращается в стационарном режиме в

Рассмотрим некоторый объем V, ограниченный поверхностью Σ. Задача о стационарном распределении температуры U(x,y,z) внутри V формируется следующим образом:

Найти функцию U(x,y,z), удовлетворяющую внутри V уравнению

ΔU=-f(x,y,z) и граничному условию, которое может быть взято в одном из следующих видов:

1) U=f1 на Σ 1-я краевая задача

2) на Σ 2-я краевая задача

3) на Σ 3-я краевая задача

f1,f2,f3,h – заданные функции

производная на внешней нормали к Σ.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)