|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Замечание. Ответ можно записать в любом из трех видов или , или
Ответ можно записать в любом из трех видов или , или . Но имейте в виду, что многие преподаватели наряду с Вашим умением решать дифференциальные уравнения хотят также проверить умение брать интегралы и преобразовывать выражения. Так что, если есть возможность, старайтесь ответ давать в виде явной функции y или в виде неявно заданной функции Ф(x, y) = 0. Дифференциальные уравнения с разделяющимися переменными . Прежде чем продолжить, напомним, что когда y является функцией аргумента x. В дифференциальных уравнениях или переменные могут быть разделены, проведением преобразований. Такие ОДУ называются дифференциальными уравнениями с разделяющимися переменными. Соответствующее ДУ с разделенными переменными запишется как . При разделении переменных следует быть очень внимательными, чтобы проводимые преобразования были эквивалентными (чтобы f2(y) и g1(x) не обращались в ноль на интервале интегрирования). В противном случае можно потерять некоторые решения. Разберемся с этим на примере. Пример. Найти все решения дифференциального уравнения . Решение. Это уравнение с разделяющимися переменными, так как мы можем разделить x и y: Для нулевой функции y исходное уравнение обращается в тождество , поэтому, y = 0 является решением дифференциального уравнения. Это решение мы могли упустить из виду. Проинтегрируем дифференциальное уравнение с разделенными переменными : В преобразованиях мы заменили C2 - C1 на С. Мы получили решение ДУ в виде неявно заданной функции . На этом можно закончить. Однако в нашем случае функцию y можно выразить явно, проведя потенцирование полученного равенства: Ответ: . Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными , a ≠ 0, b ≠ 0. Обыкновенные дифференциальные уравнения первого порядка вида , a ≠ 0, b ≠ 0 приводятся к уравнениям с разделяющимися переменными введением новой переменной z = ax + by, где z представляет собой функцию аргумента x. В этом случае После подстановки в исходное уравнение и небольших преобразований приходим к уравнению с разделенными переменными Рассмотрим пример. Пример. Найдите общее решение дифференциального уравнения и частное решение, удовлетворяющее начальному условию y(0) = e. Решение. Пусть z = 2x + y, тогда Подставим полученные результаты в исходное уравнение и преобразуем его к дифференциальному уравнению с разделяющимися переменными: Разделяем переменные и интегрируем обе части равенства . Интеграл в левой части найдем методом интегрирования по частям, а интеграл в правой части является табличным: Следовательно, . Если принять C = C2 - C1 и сделать обратную замену z = 2x + y, то получим общее решение дифференциального уравнения в виде неявно заданной функции: . Осталось найти частное решение, удовлетворяющее начальному условию y(0) = e. Для этого подставляем x = 0 и y(0) = e в общее решение дифференциального уравнения и находим значение константы С: Следовательно, искомое частное решение, удовлетворяющее условию y(0) = e, имеет вид . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |