|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Дифференциальные уравнения с разделяющимися переменными. Среди обыкновенных дифференциальных уравнений первого порядка существуют такие, в которых возможно переменные x и y разнести по разные стороны знакаСреди обыкновенных дифференциальных уравнений первого порядка существуют такие, в которых возможно переменные x и y разнести по разные стороны знака равенства. В уравнениях вида В этой статье сначала рассмотрим метод решения уравнений с разделенными переменными, далее перейдем к уравнениям с разделяющимися переменными и закончим дифференциальными уравнениями, сводящимися к уравнениям с разделяющимися переменными. Для пояснения теории будем подробно разбирать решения характерных примеров и задач. При необходимости обращайтесь к разделу основные определения и понятия теории дифференциальных уравнений. Дифференциальные уравнения с разделенными переменными Дифференциальные уравнения Название этого вида дифференциальных уравнений достаточно показательно: выражения, содержащие переменные x и y, разделены знаком равенства, то есть, находятся по разные стороны от него. Будем считать, что функции f(y) и g(x) непрерывны. Общим интегралом уравнения с разделенными переменными является равенство Пример. Найдите общее решение дифференциального уравнения с разделенными переменными Решение. Проинтегрируем обе части равенства: Мы пришли к неявно заданной функции Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |