АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод вариации произвольной постоянной для решения ЛНДУ первого порядка

Читайте также:
  1. C) размах вариации
  2. Cоздание массивов постоянной длины
  3. F. Метод, основанный на использовании свойства монотонности показательной функции .
  4. FAST (Методика быстрого анализа решения)
  5. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  6. I. 2.1. Графический метод решения задачи ЛП
  7. I. 3.2. Двойственный симплекс-метод.
  8. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  9. I. Метод рассмотрения остатков от деления.
  10. I. Методические основы
  11. I. Методические основы оценки эффективности инвестиционных проектов
  12. I. Организационно-методический раздел

Линейному неоднородному дифференциальному уравнению (ЛНДУ) соответствует линейное однородное дифференциальное уравнение (ЛОДУ) (при Q(x) = 0). Дифференциальное уравнение является уравнением с разделяющимися переменными. Проинтегрируем его.

При y=0 дифференциальное уравнение обращается в тождество, поэтому y=0 также является решением (этому случаю соответствует решение при C=0). Таким образом, можно утверждать, что - общее решение ЛОДУ, где С – произвольная постоянная.

Теперь мы знаем, что решение линейного однородного дифференциального уравнения . Для нахождения общего решения соответствующего неоднородного уравнения варьируем постоянную С, то есть, считаем С функцией аргумента x, а не константой. Другими словами, принимаем общим решением ЛНДУ.

Тогда, если подставить в дифференциальное уравнение , то оно должно обратиться в тождество

Воспользуемся правилом дифференцирования произведения:

Производная сложной функции равна . А если вспомнитьсвойства неопределенного интеграла, то .

Таким образом, возможен следующий переход: .

Полученное уравнение есть простейшее дифференицальное уравнение первого порядка. Решив его, мы определим функцию C(x), что позволит записать решение исходного линейного неоднородного дифференциального уравнения первого порядка в виде .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)