Пример 10. Подстановка выбирается аналогично предыдущему примеру
Подстановка выбирается аналогично предыдущему примеру.
Интеграл из пункта е) вашей контрольной работы берется методом интегрирования «по частям». Этим методом интегрируются некоторые произведения, например, произведения степенной функции на логарифмическую или на показательную, или на тригонометрическую, или на обратные тригонометрические функции и др.
Интегрирование «по частям» производится по формуле
Чтобы воспользоваться этой формулой, следует один множитель в подынтегральном выражении обозначить за «», а оставшийся множитель вместе с принять за «».
Для того, чтобы интеграл в правой части был проще данного интеграла, надо правильно выбрать «» и «».
В интегралах, берущихся по частям, обычно логарифмическую и обратные тригонометрические функции принимают за «u». Если подынтегральная функция содержит произведение степенной функции на показательную или тригонометрическую, то за «u» принимается степенная функция. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Поиск по сайту:
|