|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Арккосинус
Рассмотрим теперь уравнение вида . Для его решения необходимо найти на тригонометрической окружности все точки, имеющие абсциссу , т.е. точки пересечения с прямой . Как и в предыдущем случае при рассматриваемое уравнение не имеет решений. А если , имеются точки пересечения прямой и окружности, соответствующие бесконечному множеству углов , , . Чтобы однозначно определить угол , соответствующий данному косинусу, вводят дополнительное условие: этот угол должен принадлежать отрезку ; такой угол называют арккосинусом числа . Арккосинусом действительного числа называется действительное число , косинус которого равен . Такое число обозначают . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |