Графики обратных тригонометрических функций
Сначала введем понятие обратной функции.
Если функция монотонно возрастает или убывает, то для нее существует обратная функция . Для построения графика обратной функции график следует подвергнуть преобразованию симметрии относительно прямой . На рисунки приведен пример получения графика обратной функции.
Поскольку функции арксинус, арккосинус, арктангенс и арккотангенс являются обратными к функция синус, косинус, тангенс и котангенс соответственно, их графики получаются описанным выше преобразованием. Графики исходных функций на рисунках закрашены.
Из приведенных выше рисунков очевидно одно из основных свойств обратных тригонометрических функций: сумма ко-функций одного и того же числа дает .
Далее приведены свойства обратных тригонометрических функций.
Свойства обратных тригонометрических функций
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | Поиск по сайту:
|