Геометрический смысл тригонометрических функций
Геометрический смысл синуса и косинуса на тригонометрической окружности понятен из определения: это абсцисса и ординат точки пересечения подвижного радиуса, составляющего угол с неподвижным радиусом, и тригонометрической окружности. То есть , .
Рассмотрим теперь геометрический смысл тангенса и котангенса. Треугольники подобен по трем углам (, ), тогда имеет место отношение . С другой стороны, в , следовательно .
Также подобен по трем углам (, ), тогда имеет место отношение . С другой стороны, в , следовательно .
С учетом геометрического смысла тангенса и котангенса вводят понятие оси тангенсов и оси котангенсов.
Осями тангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вверх, вторая касается окружности в точке и направлена вниз.
Осями котангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вправо, вторая касается окружности в точке и направлена влево. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | Поиск по сайту:
|