АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

История тригонометрии

Читайте также:
  1. EXPFUTS (Б.История операций будущих периодов)
  2. II. Конец Золотой Орды и история образования казакского ханства
  3. III. УЧЕБНО – МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО КУРСУ «ИСТОРИЯ ЗАРУБЕЖНОЙ ЛИТЕРАТУРЫ К. XIX – НАЧ. XX В.»
  4. INSPEC (Б. Инвентарная картотека - История операций)
  5. INSPECT (Б.Инвентарная картотека - История налоговых операций)
  6. MBPAMORT (Б. Карточки МБП - История начисления амортизации на МБП)
  7. MBPSPEC (Б. Картотека МБП - История операций по МБП)
  8. MBPWROFF (Б.История списания МБП)
  9. MFCNORSP (ВД. История выдачи)
  10. PR, реклама и маркетинг: история конфликта
  11. V. Запутанная история
  12. VI. КРАТКАЯ ИСТОРИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Тригонометрия

Тригонометрия - математическая дисциплина, изучающая зависимость между сторонами и углами треугольника.

Тригонометрия возникла из практических нужд человека. С ее помощью можно определить расстояние до недоступных предметов и, вообще, существенно упрощать процесс геодезической съемки местности для составления географических карт.

Зачатки тригонометрических познаний зародились в древности. На раннем этапе тригонометрия развивалась в тесной связи с астрономией и являлась ее вспомогательным разделом.

Древнегреческие ученые разработали «тригонометрию хорд», изложенную выдающимся астрономом Птолемеем (II в.) в его работе «Альмагест». Птолемей вывел соотношения между хордами в круге (выражавшиеся словесно ввиду отсутствия в то время математической символики), которые равносильны современным формулам для синуса половинного и двойного угла, суммы и разности двух углов.

Важный шаг в развитии тригонометрии был сделан индийскими учеными, которые заменили хорды синусами. Это нововведение перешло в VIII в. в арабоязычную математику стран Ближнего и Среднего Востока, где тригонометрия постепенно превратилась из раздела астрономии в самостоятельную математическую дисциплину. Помимо синуса были введены и другие тригонометрические функции, и для них были составлены таблицы.

Интересно, что название «синус» происходит от латинского sinus - «перегиб», «пазуха» - представляет собой перевод арабского слова «джива» («тетива лука»), которым обозначали синус индийские математики. Латинское слово tangens означает «касательная». Названия «косинус» и «котангенс» представляют собой сокращения терминов complementi sinus, complementi tangens («синус дополнения», «тангенс дополнения»), выражающих тот факт, что и равны соответственно синусу и тангенсу аргумента, дополнительного к до .

Общепринятые понятия тригонометрии, а также обозначения и определения тригонометрических функций сформировались в процессе долгого исторического развития. Если, например, при введении основных тригонометрических понятий представляется естественным принимать радиус тригонометрического круга равным единице, то эта, казалось бы, простая идея была усвоена только в Х-XI вв. Если мы понимаем под синусом угла а в прямоугольном треугольнике ОВС отношение катета ВС (линия синуса) к гипотенузе ОС (т.е. радиусу единичной окружности), то в средние века термином «синус» обозначали саму линию синуса ВС. То же относится к косинусу, под которым понималась линия косинуса ОВ, и другим тригонометрическим функциям.

Лишь постепенно, благодаря введению новых понятий, а также в результате разработки и усовершенствования математической символики, тригонометрия приобрела современный вид, наиболее удобный для решения вычислительных задач. Окончательный вид она приобрела в XVIII в. в трудах Л. Эйлера.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)